PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pattern Selection in the Eutectic Growth - Thermodynamic Interpretation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The (Zn) – single crystal strengthened by the E = (Zn) + Zn16 Ti eutectic precipitate is subjected to directional growth by the Bridgman’s system and current analysis. Experimentally, the strengthening layers (stripes) are generated periodically in the (Zn) – single crystal as a result of the cyclical course of precipitation which accompanies the directional solidification. These layers evince diversified eutectic morphologies like irregular rods, regular lamellae, and regular rods. The L – shape rods of the Zn16 Ti – intermetallic compound appear within the first range of the growth rates when the irregular eutectic structure is formed. Next, the branched rods transform into regular rods and subsequently the regular rods into regular lamellae transitions can be recorded. The regular lamellae exist only within a certain range of growth rates. Finally, the regular rods reappear at some elevated growth rates. A new solution to the diffusion equation is provided to describe the micro-field of the solute concentration in the liquid adjacent to the front of the growing eutectic structure. The solution is based on the mass balance in the considered system. Moreover, the existence of the protrusion of the leading eutectic phase over the wetting one is required by the mass balance. The appearance of the d – protrusion in the growing eutectic is well confirmed by the experimental observations of the frozen solid/liquid interface.The mentioned solution satisfies the concept of the eutectic coupled growth according to which undercooling of the leading phase is less than undercooling of the wetting eutectic phase. Also, the Ti – solute micro-segregation / redistribution is analyzed within the matrix of the single crystal. The micro-segregation is described as a result of the solution to the adequate, newly developed differential equation. The definition for the solute redistribution is given by the subsequently / separately formulated relationship. This definition takes into account both extent -, and intensity of the solute redistribution. Finally, the entropy production is calculated for the regular lamellae -, and for the regular rods formation, respectively. The entropy production is a function of some parameters which define the eutectic phase diagram, coefficient of the diffusion in the liquid, and some capillary parameters connected with the mechanical equilibrium located at the triple point of the solid/liquid interface. Branches formation is related to the marginal stability. A new criterion is formulated and subjected to successful verification. It is: in the structural – thermodynamic competition the winner is this kind of the pattern for which minimum entropy production has a lower value.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Kraków, 25 Reymonta Str., Poland
Bibliografia
  • [1] G. Lesoult, M. Turpin, Memoires Scientifiques de la Revue de Metallurgie 66, 619-631 (1969).
  • [2] W. Wołczyński, Archives of Metallurgy and Materials 63 (3), 1555-1564 (2018).
  • [3] M. Trepczyńska-Łent, Archives of Foundry Engineering 11 (2), 85-88 (2012).
  • [4] W. Wołczyński, Archives of Metallurgy and Materials 65 (1), 403-416 (2020).
  • [5] P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley - Interscience, a Division of John Wiley & Sons Ltd., London/UK - New York/USA - Sydney/Australia - Toronto/Canada, (1971).
  • [6] K. A. Jackson, J. D. Hunt, Transactions of the Metallurgical Society of the AIME 236, 1129-1142 (1966).
  • [7] W. Wołczyński, Crystal Research and Technology 25, 1433-1437 (1990).
  • [8] G. Lesoult, Journal of Crystal Growth 13/14, 733-738 (1972).
  • [9] B. Toloui, A. Hellawell, Acta Metallurgica 24, 565-573 (1976).
  • [10] P. Magnin, W. Kurz, Acta Metallurgica 35, 1119-1128 (1987).
  • [11] J. F. Major, J. W. Rutter, Materials Science and Technology 5, 645-656 (1989).
  • [12] W. W. Mullins, R. F. Sekerka, Journal of Applied Physics 35, 444-451 (1964).
  • [13] D. J. Fisher, W. Kurz, Acta Metallurgica 28, 777-794 (1980).
  • [14] I. Prigogine, From Being to Becoming: Time and Complexity in the Physical Sciences, Ed. W. H. Freeman & Company, San Francisco/USA, (1980).
  • [15] E. Scheil, Zeitschrift fur Metallkunde 34, 70-72 (1942).
  • [16] W. Wołczyński, Back-Diffusion Phenomenon during the Crystal Growth by the Bridgman Method, chapter 2 in the book: Modelling of Transport Phenomena in Crystal Growth, Ed. J.S. Szmyd & K. Suzuki; WIT Press: Southampton/UK - Boston/USA, 19-59 (2000).
  • [17] M. J. Aziz, Journal of Applied Physics 53, 1158-1168 (1982).
  • [18] W. Wołczyński, Defect and Diffusion Forum 272, 123-138 (2007).
  • [19] V. L. Davies, Journal of the Institute of Metals 93, 10-14 (1964-65).
  • [20] G. Boczkal, Archives of Metallurgy and Materials 58 (4), 1019-1022 (2013).
  • [21] W. Wołczyński, Crystal Research and Technology 25 (12), 1433-1437 (1990).
  • [22] I. Prigogine, Introduction a la Thermodynamique des Processus Irreversibles, Monographies DUNOD, Paris/France, (1968).
  • [23] W. Wołczyński, Crystal Research and Technology 24, 139-148 (1989).
  • [24] W. Wołczyński, Archives of Metallurgy and Materials 60 (3B), 2403-2407 (2015).
  • [25] W. Wołczyński, C. Senderowski, B. Fikus, A. J. Panas, Archives of Metallurgy and Materials 62 (4), 2391-2397 (2017).
  • [26] T. Himemiya, W. Wołczyński, Materials Transactions of the Japan Institute of Metals 43 (11), 2890-2896, (2002).
  • [27] P. Peng, X. Li, D. Liu, Y. Su, J. Guo, H. Fu, Acta Metallurgica Sinica, 49 (3), 311-319, (2013).
  • [28] B. Caroli, C. Caroli, B. Roulet, Journal de Physique 43, 1767-1780 (1982).
  • [29] J. S. Kirkaldy, Metallurgical Transactions 24A, 1689-1721 (1993).
  • [30] A. Ludwig, W. Kurz, Materials Science Forum 215-216, 13-20 (1996).
  • [31] W. Wołczyński, Archives of Metallurgy and Materials 63 (1), 65-72 (2018).
Uwagi
EN
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd9e0a22-cebf-4a23-976b-ad7f15359872
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.