Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: A growing trend to use the copper-based strips is observed recently world-wide in the electric and electronic industry . Ultrafine grained copper and solid solution hardened copper alloys are applied where high electrical conductivity and good mechanical properties are required. Design/methodology/approach: This study was aimed to investigate microstructure in strips of copper alloys with different stacking fault energy value. The investigated materials have been processed by one of the severe plastic deformation method, using different variants of continuous repetitive corrugation and straightening (CRCS). Deformation was executed by parallel and perpendicular corrugation and straightening of strip sample. Findings: Continuous repetitive corrugation and straightening is a promising method for refining of microstructure of metallic strips. Practical implications: A growing trend to use copper brass and bronze strips with improved functional properties is observed recently world-wide. Within this group of materials particular attention is drawn to those with ultra fine or nanometric grain size. Originality/value: The paper contributes to the microstructure evolution of solid solution hardened and age-hardened copper alloys strips produced by original RCS method.
Wydawca
Rocznik
Tom
Strony
53--63
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
autor
- Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
autor
- Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
autor
- Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
autor
- Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
- Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
- [1] J. Huang, Y. Zhu, H. Jiang, T. Lowe, Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening, Acta Materialia 49 (2001) 1497-1505.
- [2] Y. Zhu, J. Huang, H. Jiang, T. Lowe, Processing of bulk nanostructured copper by repetitive corrugation and straightening, Proceeding of 2nd Global Symposium on Innovations in Materials Processing and Manufacturing - Sheet Materials, TMS Annual Meeting, New Orleans, 2001.
- [3] R. Asaro, P. Krysl, D. Benson, Deformation mechanism and manufacturing of nanostructured materials processed by severe plastic deformation (SPD) NSF Nanoscale, Proceedings of the Science and Engineering Grantees Conference, 2003, 16-18,.
- [4] J.Y. Huang, X.Z. Liao, Y.T. Zhu, F. Zhou, E.J. Lavernia, Grain boundary structure of nanocrystaline Cu processed by cryomilling, Philosophical Magazine 83/12 (2003) 14071419.
- [5] J. Huang, Y.T. Zhu, D.J. Alexander, X. Liao, T.C. Lowe, R.J. Asaro, Development of repetitive corrugation and straightening, Materials Science and Engineering A 371 (2004) 35-39.
- [6] F.A. Mohamed, Y. Xun, Correlations between the minimum grain size produced by milling and material parameters, Materials Science and Engineering A 354 (2003) 133-139.
- [7] H.-J. Fecht, Nanostructure formation by mechanical attrition, Nano Structured Materials 6 (1995) 33-42.
- [8] A. Mishra, V. Richard, F. Gregori, R.J. Asaro, M.A. Mayers, Micro structural evolution in copper processed by severe plastic deformation, Materials Science and Engineering A 410-411 (2005) 290-298.
- [9] M.A. Meyers, V.F. Nesterenko, J.C. LaSalvia, Q. Xue, Shear localization in dynamic deformation of materials: microstructural evolution and self-organization, Materials Science and Engineering A 317 (2001) 204-225.
- [10] Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, T.G. Langdon, Influence of stacking fault energy on minimum grain size achieved in severe plastic deformation, Materials Science and Engineering A 463 (2007) 22-26.
- [11] Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon, Y.T. Zhu, Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu-Zn alloys, Materials Science and Engineering A 493/1-2 (2008) 123-129.
- [12] K.S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Materialia 51 (2003) 5743-5774.
- [13] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Micro structure refining of CuNi2Si1 alloy using RCS method, conference materials, Proceedings of the XXXVII School of Materials Science and Engineering" Cracow-Krynica, 2009, 139-143
- [14] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Ultrafine grained strip of CuCr0,6 alloy prepared by CRCS metod, Journal of Achievements in Materials and Manufacturing Engineering 33/2 (2009) 166-172.
- [15] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Microstructure and properties of CuNi2Si1 alloy processed by continuous RCS method, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 466-479.
- [16] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Micro structure evolution in CRCS processed strips of CuCr0.6 alloy, Journal of Achievements in Materials and Manufacturing Engineering 38/2 (2010) 195-202.
- [17] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Ultrafine grained strips of precipitation hardened copper alloys, Archives of Metallurgy and Materials 56 (2011) 171-179.
- [18] J. Stobrawa, J. Domagała-Dubiel, W. Głuchowski, J. Sobota, Microstructure and properties of CuSn6 strips processed by continuous RCS method, Proceedings of the XL School of Materials Engineering, Cracow, 2012, 416-420.
- [19] S.Ch. Yoon, U. Krishnaiah, Chakkingal, H.S. Kim, Severe plastic deformation and strain localization in groove pressing, Computational Materials Science 43 (2008) 641-645.
- [20] S.N. Dey, P. Chatterjee, S.P. Sen Gupta, Deformation stacking fault propability and dislocation microstructure of cold worked Cu-Sn-5Zn alloys by X-ray diffraction line profile analysis, Journal of Applied Physics 100/7 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd9ae0d9-0984-42fd-85f1-ecdff8d00f0b