PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of activated carbon from the biodegradable film for CO2 capture applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work for the first time, activated carbons were prepared from carboxymethyl film (low-cost carboxymethyl film waste), using chemical activation with potassium hydroxide. The samples were characterized by nitrogen adsorption-desorption at 77 K, XRD, SEM methods. The high values of the specific surface area and total pore volume were achieved and were equal to 2064 m2 /g and 1.188 cm3 /g, respectively. Waste from the film can be immediately utilized without CO2  production. This is the environmentally friendly way of waste utilization. Through this process, we can protect our environment. This study showed that the activated carbon obtained from carboxymethyl film waste can be used as a good adsorbent for CO2  adsorption.
Rocznik
Strony
75--80
Opis fizyczny
Bibliogr. 84 poz., rys.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Pulaskiego 10, 70-322 Szczecin, Poland, Institute of Inorganic Chemical Technology and Environment Engineering
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Pulaskiego 10, 70-322 Szczecin, Poland , Institute of Organic Chemical Technology
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Pulaskiego 10, 70-322 Szczecin, Poland, Polymer Institute
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Pulaskiego 10, 70-322 Szczecin, Poland , Institute of Organic Chemical Technology
Bibliografia
  • 1. Manan, Z.A., Nawi, W.N.R.M., Alwi, S.R.W. & Klemes, J.J. (2017). Advances in Process Integration research for CO2 emission reduction - A review. J. Clean. Prod. 167, 1–13. DOI: 10.1016/j.jclepro.2017.08.138.
  • 2. IPCC, Direct global warming potentials, IPCC assess. Rep. Clim. Change 2007 (2007) 2.10.2.
  • 3. Stroud, T., Smith, T.J., Saché, E. L., Santos, J.L., Centeno,M.A., Arellano-Garcia, H., Odriozol, J.A. & Reina T.R., (2018). Chemical CO2 recycling via dry and bireforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Appl. Cat. B-Environ. 224, 125–135. DOI.org/10.1016/j.apcatb.2017.10.047.
  • 4. Michalkiewicz, B., Srenscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Cat. Lett.,129(1–2), 142–148, DOI: 10.1007/s10562-008-9797-6.
  • 5. Lubkowski, K., Arabczyk, W., Grzmil, B., Michalkiewicz, B. & Pattek-Janczyk, A. (2007), Passivation and oxidation of an ammonia iron catalyst. Appl. Catal. A-Gen. 329, 137–147, DOI: 10.1016/j.apcata.2007.07.006.
  • 6. Majewska, J. & Michalkiewicz, B. (2016). Production of hydrogen and carbon nanomaterials from methane using Co/ ZSM-5 catalyst. Int. J. Hydrogen. Energ. 41(20), 8668–8678, DOI: 10.1016/j.ijhydene.2016.01.097.
  • 7. Michalkiewicz, B. & Majewska, J. (2014). Diameter controlled carbon nanotubes and hydrogen production. Int. J. Hydrogen Energ. 39(9), 4691–4697, DOI: 10.1016/j. ijhydene.2013.10.149.
  • 8. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Significance of Ni content and temperature. New Carbon Mater. 29(2), 102–108, DOI: 10.1016/S1872- 5805(14)60129-3.
  • 9. Lu, G.Q., Costa, J.C., Duke, M., Giessler, S., Socolow, R., Williams, R.H. & Kreutz, T. (2007). Inorganic membranes for hydrogen production and purification: a critical review and perspective. J. Colloid. Interface. Sci. 314, 589–603. DOI: 10.1016/j.jcis.2007.05.067.
  • 10. Michalkiewicz, B. & Koren, Z.C. (2015). Zeolite membranes for hydrogen production from natural gas: state of the art. J. Porous Mat. 22(3), 635–646, DOI: 10.1007/s10934-015- 9936-6.
  • 11. Ziebro, J., Skorupinska, B., Kadziolka, G. & Michalkiewicz, B. (2013). Synthesizing Multi-walled Carbon Nanotubes over a Supported-nickel Catalyst. Fuller Nanotub Car N. 21(4), 333–345, DOI: 10.1080/1536383X.2011.613543.
  • 12. Majewska, J. & Michalkiewicz, B. (2016). Preparation of Carbon Nanomaterials over Ni/ZSM-5 Catalyst Using Simplex Method Algorithm. Acta Phys. Pol. A. 129(1), 153–157, DOI: 10.12693/APhysPolA.129.153.
  • 13. Ziebro, J., Lukasiewicz, I., Borowiak-Palen, E., Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology. 21(14), DOI: 10.1088/0957- 4484/21/14/145308
  • 14. Ziebro, J., Lukasiewicz, I., Grzmil B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloy Compd. 485(1–2), 695–700, DOI: 10.1016/j.jallcom.2009.06.039.
  • 15. Majewska, J. & Michalkiewicz, B. (2013). Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A-Mater. 111(4), 1013–1016, DOI: 10.1007/ s00339-013-7698-z.
  • 16. Michalkiewicz, B., Srenscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem. Pap. 62(1), 106–113, DOI: 10.2478/s11696-007-0086-4.
  • 17. Michalkiewicz, B. (2003). Partial oxidation of methane to oxygenates. Przem. Chem. 82(8–9), 627–628.
  • 18. Michalkiewicz, B. (2005). Kinetics of partial methane oxidation process over the Fe-ZSM-5 catalysts. Chem. Pap. 59(6A), 403–408.
  • 19. Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe- ZSM-5. Appl. Catal. A-Gen. 277(1–2), 147–153, DOI: 10.1016/j. apcata.2004.09.005.
  • 20. Michalkiewicz, B., Ziebro, J. & Srenscek-Nazzal, J. (2006). Direct oxidation of methane to formaldehyde. Przem. Chem. 85(8–9), 624–626.
  • 21. Kałucki, K.,Michalkiewicz B., Morawski A.W., Arabczyk W. & Ziebro J. (1995). Przem Chem. 74(4), 135–136.
  • 22. Markowska, A. & Michalkiewicz, B. (2009). Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. 63(2), 105–110, DOI: 10.2478/s11696-008- 0100-5
  • 23. Michalkiewicz, B. (2011). Methane oxidation to methyl bisulfate in oleum at ambient pressure in the presence of iodine as a catalyst. Appl. Catal. A-Gen. 394(1–2), 266–268, DOI: 10.1016/j.apcata.2011.01.014
  • 24. Michalkiewicz, B. & Kosowski, P. (2007). The selective catalytic oxidation of methane to methyl bisulfate at ambient pressure. Catal. Comun. 8(12), 1939–1942, DOI: 10.1016/j. catcom.2007.03.014
  • 25. Michalkiewicz, B. & Kalucki, K. (2002). Direct conversion of methane into methanol formaldehyde and organic acids. Przem. Chem. 81(3), 165–170.
  • 26. Jarosinska, M., Lubkowski, K.,Sosnicki, J.G. & Michalkiewicz, B. (2008). Application of Halogens as Catalysts of CH(4) Esterification. Catal. Lett. 126(3–4), 407–412, DOI: 10.1007/s10562-008-9645-8.
  • 27. Michalkiewicz, B. (2006). Methane esterification in oleum. Chem. Pap-Chem. Zvesti. 60(5), 371–374, DOI: 10.2478/ s11696-006-0067-z.
  • 28. Michalkiewicz, B. (2003). Methane conversion to methanol in condensed phase, Kinet Catal 44(6), 801–805, DOI: 10.1023/B:KICA.0000009057.79026.0b
  • 29. Michalkiewicz, B., Kalucki, K. & Sosnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation, J. Catal. 215(1), 14–19, DOI: 10.1016/S0021-9517(02)00088-X.
  • 30. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal A 307(2), 270–274, DOI: 10.1016/j.apcata.2006.04.006.
  • 31. Michalkiewicz, B. (2008). Assessment of the possibility of the methane to methanol transformation. Pol. J. Chem. Technol. 10(2), 20–26, DOI: 10.2478/v10026-008-0023-5.
  • 32. Michalkiewicz, B. (2006). Esterification of methane as the first stage in converting the natural gas to methanoll. Przem. Chem. 85(8–9), 620–623.
  • 33. Michalkiewicz, B. & Balcer, S. (2012). Bromine catalyst for the methane to methyl bisulfate reaction. Pol. J. Chem. Technol. 14(4), 19–21, DOI: 10.2478/v10026-012-0096-z.
  • 34. Michalkiewicz, B., Jarosinska, M. & Lukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J. 154(1–3), 156–161, DOI: 10.1016/j.cej.2009.03.046.
  • 35. Michalkiewicz, B., Ziebro, J. & Tomaszewska, M. (2006). Preliminary investigation of low pressure membrane distillation of methyl bisulphate from its solutions in fuming sulphuric acid combined with hydrolysis to methanol. J. Membrane Sci. 286(1–2), 223–227, DOI: 10.1016/j.memsci.2006.09.039.
  • 36. Srenscek-Nazzal, J., Kaminska, W., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind Crop Pord. 47, 153–159, DOI: 10.1016/j.indcrop. 2013.03.004.
  • 37. Duda, J.T., Kwiatkowski, M., Milewska-Duda, J. (2010). Application of clustering based gas adsorption models to analysis of microporous structure of carbonaceous materials. Appl. Surf Sci. 256(17), 5243–5248, DOI:10.1016/j.apsusc.2009.12.111.
  • 38. Kwiatkowski, M., Duda, J.T. & Milewska-Duda, J. (2014). Application of the LBET class models with the original fluid statemodel to an analysis of single, double and triple carbon Surf. A: Physicochem. Enginer. Asp. 457(1), 449–454, DOI: 10.1016/j.colsurfa.2014.06.021.
  • 39. Kwiatkowski, M., Duda, J.T. (2014). Szybka wielowariantowa analiza izoterm adsorpcji ditlenku węgla i metanu. Przem. Chem. 93(6), 878–881, DOI: 10.12916/przemchem.2014.878.
  • 40. Michalkiewicz B., Majewska, J., Kadziotka, G., Bubacz, K., Mozia, S. & Morawski, A.W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst, J. CO2 Util. 5, 47–52, DOI: 10.1016/j jcou.2013.12.004.
  • 41. Marcinkowski, D., Walesa-Chorab, M., Patroniak, V. Kubicki, M., Kadziolka, G. & Michalkiewicz, B. (2014). A new ligand – synthesis, crystal structure and its photocatalytic activity.New. J. Chem. 38(2), 604–610, DOI: 10.1039/c3nj01187a.
  • 42. Walesa-Chorab, M., Patroniak, V., Kubicki, M., Kadziolka, G., Przepiorski, J. & Michalkiewicz, B. (2012). Synthesis, structure, and photocatalytic properties of new dinuclear helical complex of silver(I) ions. J. Catal. 291, 1–8, DOI: 10.1016/j. jcat.2012.03.025.
  • 43. Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2015). Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. J. Chem. Eng. Data. 60(11), 3148–3158, DOI: 10.1021/acs.jced.5b00294.
  • 44. Lendzion-Bielun, Z., Czekajlo, L., Sibera, D., Moszynski, D., Srenscek-Nazzal, J., Morawski, A.W., Wrobel, R.J., Michalkiewicz, B., Arabczyk, W. & Narkiewicz, U. (2018). Surface characteristics of KOH-treated commercial carbons applied for CO2 adsorption. Adsorpt. Sci. Technol. 36(1–2), 478–492, DOI: 10.1177/0263617417704527.
  • 45. Gesikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz B., Narkiewicz, U., Morawski, A.W. & Wrobel, R.J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids, Chem Eng J. 309, 159–171, DOI: 10.1016/j.cej.2016.10.005.
  • 46. Kwiatkowski, M., Policicchio, A., Seredych, M. & Bandosz, T.J. (2016). Evaluation of CO2 interactions with S-doped nanoporous carbon and its composites with a reduced GO: Effect of surface features on an apparent physical adsorption mechanism. Carbon, 98, 250–258, DOI: 10.1016/j.carbon.2015.11.019.
  • 47. Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R., Gesikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modification of Commercial Activated Carbons for CO2 Adsorption. Acta. Phys. Pol. A. 129(3), 394–401, DOI:
  • 48. Gong, J., Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X. & Tang, T. (2014)., Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. Acs Sustain Chem. Eng. 2 (12), 2837–2844, DOI: 10.1021/sc500603h.
  • 49. Deepu, J.B., Lange M., Cherkashinin, G., Issanin, A., Staudt, R. & Schneider J.J. (2013). Gas adsorption studies of CO2 and N2 in spatially aligned double-walled carbon nanotube arrays. Carbon, 61, 616–623. DOI.org/10.1016/j.carbon.2013.05.045.
  • 50. Cinke, M., Li, J., Bauschlicher, C., Ricca, A. & Meyyappan M. (2003). CO2 adsorption in single-walled carbon nanotubes. Chem. Phys. Lett. 376 761–766. DOI.org/10.1016/ S0009-2614(03)01124-2.
  • 51. Zgrzebnicki, M., Krauze, N., Gesikiewicz-Puchalska, A., Kapica-Kozar, J., Pirog E., Jedrzejewska, A., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wrobel, R.J. (2017). Impact on CO2 Uptake of MWCNT after Acid Treatment Study. J. Nanomater. DOI: 10.1155/2017/7359591.
  • 52. Serafin, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons rom biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18, 73–79, DOI: 10.1016/j.jcou.2017.01.006.
  • 53. Mohd, A., Ghani W.A.W.A.K., Resitanim, N.Z. & Sanyang, L., (2013). A Review: Carbon Dioxide Capture: Biomass-Derived-Biochar and Its Applications, J. Dispers. Sci. Technol. 4(7), 2013, 974–984, DOI: 10.1080/01932691.2012.704753.
  • 54. Alabadi, A., Razzaque, S., Yang, Y., Chen, S. & Tan, B. (2015). Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity. Chem. Eng. J. 281, 606–612. DOI: 10.1016/j.cej.2015.06.032.
  • 55. Davida, E. & Kopac, J. (2014). Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. J. Anal. Appl. Pyrol. 110, 322–332. DOI: 10.1016/j.jaap.2014.09.021.
  • 56. Hao, W., Björkman, E., Lilliestråle, M. & Hedin, N. (2013). Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Appl Energ. 112, 526–532. DOI: org/10.1016/j.apenergy.2013.02.028.
  • 57. Glonek, K., Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2, Acta Phys Pol A. 129(1), 158–161, DOI: 10.12693/APhysPolA.129.158.
  • 58. Mlodzik, J., Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2016). Activated Carbons from Molasses as CO2 Sorbents, Acta Phys Pol A. 129(3), 402–404, DOI: 10.12693/APhysPolA.129.402.
  • 59. Yang, X., Yi, H., Tang, X., Zhao, S., Yang Z., Ma, Y., Feng, T. & Cui, X. (2018). Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure, J. Environ. Sci. 67, 104–114, DOI: 10.1016/j.jes.2017.06.032.
  • 60. Gupta, H. & Singh, S. (2018). Kinetics and thermodynamics of phenanthrene adsorption from water on orange rind activated carbon, Environmental Technology & Innovation 10, 208–214, DOI: 10.1016/j.eti.2018.03.001.
  • 61. Norouzi, S., Heidari, M., Alipour, V., Rahmanian, O., Fazlzadeh, M., Mohammadi-moghadam, F., Nourmoradi, H. & Goudarzi, B. (2018). Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste, Bioresource Technol. 258 48–56 DOI: 10.1016/j.psep.2018.04.026.
  • 62. Shen, F., Liu, J., Zhang, Z., Dong, Y., Gu, Ch. (2018). Density functional study of hydrogen sulfide adsorption mechanism on activated carbon. Fuel. Process. Technol. 171, 258–264 DOI: 10.1016/j.fuproc.2017.11.026.
  • 63. Baca, M., Cendrowski, K., Banach, P., Michalkiewicz, B., Mijowska, E., Kalenczuk, R.J. & Zielinska, B. (2017). Effect of Pd loading on hydrogen storage properties of disordered mesoporous hollow carbon spheres. Int J Hydrogen Energ 42(52), 30461–30469, DOI: 10.1016/j.ijhydene.2017.10.146.
  • 64. Wenelska, K., Michalkiewicz, B., Chen, X., Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity, Energy 75, 549–554, DOI: 10.1016/j.energy.2014.08.016.
  • 65. Wenelska, K., Michalkiewicz, B., Gong, J., Tang, T., Kalenczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage, Int J Hydrogen Energ. 38(36), 16179–16184, DOI: 10.1016/j.ijhydene.2013.10.008.
  • 66. Zielinska, B., Michalkiewicz, B., Chen, X., Mijowska, E. & Kalenczuk, R.J. (2016). Pd supported ordered carbon spheres (OMHCS) for hydrogen storage, Chem Phys Lett. 647, 14–19, DOI: 10.1016/j.cplett.2016.01.036.
  • 67. Zielinska, B., Michalkiewicz, B., Mijowska, E. & Kalenczuk, R.J. (2015). Advances in Pd Nanoparticle Size Decoration of Mesoporous Carbon Spheres for Energy Application, Nanoscale Res Lett. 10. DOI: 10.1186/s11671-015-1113-y.
  • 68. Glonek, K., Wroblewska, A., Makuch, E., Ulejczyk, B., Krawczyk, K., Wrobel, R.J., Koren, Z.C. & Michalkiewicz, B. (2017)., Oxidation of limonene using activated carbon modified in dielectric barrier discharge plasma. Appl. Surf. Sci. 420, 873–881. DOI: 10.1016/j.apsusc.2017.05.136.80 Pol. J. Chem. Tech., Vol. 20, No. 3, 2018
  • 69. Wroblewska, A., Makuch, E., Mlodzik, J. & Michalkiewicz, B. (2017). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Porsec Synth 6(4), 397–401. DOI: 10.1515/gps-2016-0148.
  • 70. Serafin, J. (2017). Utlization of spent dregs for the production activated carbon for CO2 adsorption. Pol J Chem Technol. 19(2), 44–50. DOI: 10.1016/S1750-5836(07)00094-1.
  • 71. Mlodzik, J., Wroblewska, A., Makuch, E., Wrobel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol, Catal. Today. 268, 111–120, DOI: 10.1016/j.cattod.2015.11.010.
  • 72. Kwiatkowski, M., Srenscek-Nazzal, J. & Michalkiewicz, B. (2017). An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12. Adsorption, 23(4), 551–561, DOI: 10.1007/s10450-017-9867-4.
  • 73. Kwiatkowski, M. & Broniek, E. (2017). An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation. Colloid. Surface. A. 529, 443–453, DOI: 10.1016/j.colsurfa.2017.06.028.
  • 74. Kwiatkowski, M., Fierro, V. & Celzard, A. (2017). Numerical studies of the effects of process conditions on the development of the porous structure of adsorbents prepared by chemical activation of lignin with alkali hydroxides. J. Colloid. Interf. Sci. 486, 277–286, DOI: 10.1016/j.jcis.2016.10.003.
  • 75. Kwiatkowski, M., Kalderis, D. & Diamadopoulos, E. (2017). Numerical analysis of the infl uence of the impregnation ratio on the microporous structure formation of activated carbons, prepared by chemical activation of waste biomass with phosphoric acid. J. Phys. Chem. Solids. 105, 81–85, DOI: 10.1016/j.jpcs.2017.02.006.
  • 76. Kwiatkowski, M. & Broniek, E. (2013). Application of the LBET class adsorption models to the analysis of microporous structure of the active carbons produced from biomass by chemical activation with the use of potassium carbonate. Colloids Surf. A. 427, 47–52, DOI: 10.1016/j.colsurfa.2013.03.002.
  • 77. Srenscek-Nazzal, J. & Michalkiewicz, B. (2011). The simplex optimization for high porous carbons preparation. Pol J Chem Technol., 13(4), 63–70, DOI: 10.2478/v10026-011-0051-4.
  • 78. Zee, M., Stoutjesdijk P.A.A. & Heijden, D.W. (1997). Structure-biodegradation relationships of polymeric materials. 1. Effect of degree of oxidation on biodegradability of carbohydrate polymers. J. Polymer. Environ. 3(4), 235–242.
  • 79. Grima, S., Bellon- Maurel, V., Feuilloley, P. & Silvestre, F. (2002). Aerobic Biodegradation of Polymers in Solid-State Conditions: A Review of Environmental and Physicochemical Parameter Settings in Laboratory Simulation. J Polymer Environ. 8(4), 183–195. DOI: 10.1023/A:1015297727244.
  • 80. Jayasekara, R., Harding, I., Bowater, I. & Lonergan, G. (2005). Biodegradability of Selected Range of Polymers and Polymer Blends and Standard Methods for Assessment of Biodegradation. J. Polymer. Environ. 13, 231–251. DOI: 10.1007/s10924-005-4758-2.
  • 81. Spychaj, T., Wilpiszewska, K. & Zdanowicz, M. (2013). Medium and high substituted carboxymethyl starch: Synthesis, characterization and application. Starch, 65, 22, DOI: 10.1002/star.201200159.
  • 82. Spychaj, T., Wilpiszewska, K. & Antosik, A. (2015). Novel hydrophilic carboxymethyl starch/montmorillonite nanocomposite films. Carbohyd. polym. 128. DOI: 10.1016/j.carbpol.2015.04.023
  • 83. Serafin, J., Czech, Z., Antosik, A., Wilpiszewska, K. & Michalkiewicz, B. 2016 P 418159.
  • 84. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J. & Siemienewska, T., 1985, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity Pure Appl. Chem., 57, 603. DOI: https://doi.org/10.1515/iupac.57.0007 .
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd97b480-d268-4e7d-8d81-adb09a9eab64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.