PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Use of Coffee Waste in the Reduction of Metallurgical Slags

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coffee is grown in over 50 countries around the world, and its sale is the largest in the world trade after crude oil. In the case of coffee beans, after consumption remains a solid waste in the form of a waste plant extract. At present, coffee waste is not fully managed, which means that it is often deposited in landfills. Taking into account their availability on the market and the content of significant amounts of carbon in them, it was proposed to use them as a reducing agent in the processing of copper slags. The use of Solid Coffee Grounds (SCG) as an alternative reducing agent for coke and coke breeze can be beneficial in two aspects. The first is the reduction of carbon dioxide emissions in the process, and the second is due to the possible release of hydrocarbons from these wastes at high temperatures, which, apart from participating in the reduction process itself, causes also mixing of the bath in the melting unit, which facilitates the process of copper sedimentation in the slag. The experiments carried out on a laboratory scale showed the possibility of reducing the copper content in the slag after the reduction process from 10.3 to 0.41 % by mass. The obtained values of the relative degree of copper splashing for all experiments ranged from 88.4 to 96.0 %. The presented solution is an innovative approach to the use of SCG in the processing of copper slags.
Rocznik
Strony
103--109
Opis fizyczny
Bibliogr. 26 poz., il., tab., wykr.
Twórcy
  • Silesian University of Technology, Faculty of Materials Engineering, Katowice, Poland
  • Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Gliwice, Poland
  • Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Materials Engineering, Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, Katowice, Poland
Bibliografia
  • [1] http://gospodarkapodkarpacka.pl/news/view/41600/rynek kawy-w-polsce-i-na-swiecie-w-2020-r. Retrieved October 20, 2022.
  • [2] International Coffee Organisation. (2022). Retrieved October, 20, 2022, from https://www.ico.org/new_historical.asp?section=Statistics.
  • [3] Kondamudi, N., Mohapatra, S.K. & Misra, M. (2008). Spent coffee grounds as a versatile source of green energy. Journal of Agricultural and Food Chemistry. 56(24), 11757-11760. http://dx.doi.org/10.1021/jf802487s.
  • [4] Al-Hamamre, Z., Foerster, S., Hartmann, F., Kröger, M. & Kaltschmitt, M. (2012). Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel. 96, 70-76. http://dx.doi.org/10.1016/j.fuel.2012.01.023.
  • [5] Vardon, D.R., Moser, B.R., Zheng, W., Witkin, K., Evangelista, R.L., Strathmann, T.J., et al. (2013). Complete utilization of spent coffee grounds to produce biodiesel, bio oil, and biochar. ACS Sustainable Chemistry & Engineering. 1(10), 1286-1294. http://dx.doi.org/10.1021/sc400145w.
  • [6] Caetano, N.S., Silva, V.F.M. & Mata, T.M. (2012). Valorization of coffee grounds for biodiesel production. Chemical Engineering Transactions. 26, 267-272. https://doi.org/10.3303/CET1226045.
  • [7] Zuorro, A. & Lavecchia, R. (2012). Spent coffee grounds as a valuable source of phenolic compounds and bioenergy. Journal of Cleaner Production. 34, 49-56. http://dx.doi.org/10.1016/j.jclepro.2011.12.003.
  • [8] Cruz, R., Cardoso, M.M., Fernandes, L., Oliveira, M., Mendes, E., Baptista, P., et al. (2012). Espresso coffee residues: a valuable source of unextracted compounds. Journal of Agricultural and Food Chemistry. 60(32), 7777-7784. http://dx.doi.org/10.1021/jf3018854.
  • [9] Tokimoto, T., Kawasaki, N., Nakamura, T., Akutagawa J. & Tanada, S. (2005). Removal of lead ions in drinking water by coffee grounds as vegetable biomass. Journal of Colloid and Interface Science. 281(1), 56-61. https://doi.org/10.1016/ j.jcis.2004.08.083.
  • [10] Nakanishi, A., Tamai, M., Kawasaki, N., Nakamura, T., Araki, M. & Tanada, S. (2002). Characterization of water adsorption onto carbonaceous materials produced from food wastes. Journal of Colloid and Interface Science. 255(1), 59-63. http://dx.doi.org/10.1006/jcis.2002.8651.
  • [11] Kante, K., Nieto-Delgado, C., Rangel-Mendez, R. & Bandosz, T. J. (2012). Spent coffee-based activated carbon: specific surface features and their importance for H2S separation process. Journal of Hazard Materials. 30, 141-147. https://doi.org/10.1016/j.jhazmat.2011.11.053.
  • [12] Mussatto, S.I., Carneiro, L.M., Silva, J.P.A., Roberto, I.C. & Teixeira, J.A. (2011). A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers. 83(2), 368-374. https://doi.org/10.1016/ j.carbpol.2010.07.063.
  • [13] Zhou, S., Wei, Y., Li, B. & Wang, H. (2018). Effect of iron phase evolution on copper separation from slag via coal based reduction. Metallurgical and Materials Transactions B. 31B(5), 945-955. https://doi.org/10.1007/s11663-000- 0071-6.
  • [14] Gorai, B. & Jana, R.K. (2002). Characteristics and utilization of copper slag. Resources, Conservation and Recycling. 39(4), 299-313. https://doi.org/10.1016/S0921- 3449(02)00171-4.
  • [15] Heo, J., Kim, B. & Park, J.H. (2013). Effect of CaO addition on iron recovery from copper smelting slags by carbon. Metallurgical and Materials Transactions B. 44B(6), 1352- 1363. https://doi.org/10.1007/s11663-013-9908-7.
  • [16] Erdenebold, U., Choi, M.H. & Wang, J.P. (2018). Recovery of pig iron from coper smelting slag by reduction smelting. Archives of Metallurgy and Materials. 63, 1793-1798. DOI: 10.24425/amm.2018.125106.
  • [17] Łabaj, J., Blacha, L., Jodkowski, M., at all. (2021). The use of waste, fine-grained carbonaceous material in the process of copper slag reduction. Journal of Cleaner Production. 288, 1-10. DOI:10.1016/j.jclepro.2020.125640.
  • [18] Blacha, L., Łabaj, J., Jodkowski, M at all. (2020). Research on the reduction of copper slag using an alternative coal range. Metalurgija. 59(3), 329-332.
  • [19] Siwiec, G., Sozańska, M., Blacha, L. & Smalcerz, A. (2015). Behaviour of iron during reduction of slag obtained from copper flash smelting. Metalurgija. 54(1), 113-115.
  • [20] Zuo, Z., Yu, Q., Wei, M., Xie, H., Duan, W., Wang, K. & Qin, Q. (2016). Thermogravimetric study of the reduction of copper slag by biomass. Journal of Thermal Analysis and Calorimetry. 126(2), 481-491. https://doi.org/10.1007/ s10973-016-5570-z.
  • [21] Zuo, Z., Yu, Q., Xie, H., Qin, Q. & Wei, M. (2018). Direct reduction of copper slag composite pellets within lignite using biomass as binder. In Springer (Eds.), The Minerals, Metals & Materials Series (pp. 65-75). Springer. Retrieved 01 February 2018 from SpringerLink https://link.springer.com/chapter/10.1007/978-3-319-72362- 4_6. https://doi.org/10.1007/978-3-319-72362-4_6.
  • [22] Zuo, Z., Yu, Q., Luo, S., Zhang, J. & Zhou, E. (2020). Effect of two-step reduction characteristics of copper slag using biochar as reducer-thermodynamic and kinetics. Energy & Fuels. 34(1), 491-500. https://doi.org/10.1021/acs.energyfuels.9b03274.
  • [23] Qu, G., Wei, Y., Li, B., Wang, H., Yang, Y. & Mclean, A. (2020). Recovery of copper smelting slag using a green reductant, 11th International Symposium on High Temperature Metallurgical Processing. The Minerals, Metals & Materials Series. Springer. (pp. 417-429). https://doi.org/10.1007/978-3-030-36540-0_37.
  • [24] Li, B., Wei, Y., Wang, H. & Yang, Y. (2018). Reduction of magnetite from copper smelting slag using petrodiesel and biodiesel. ISIJ International. 58(6), 1168-1174. https://doi.org/10.2355/isijinternational.ISIJINT-2017-723.
  • [25] Zhou, S., Wei, Y., Zhang, S., Li, B., Wang, H., Yang, Y. & Barati, M. (2019). Reduction of copper smelting slag using waste cooking oil. Journal of Cleaner Production. 236, 1-10. https://doi.org/10.1016/j.jclepro.2019.117668.
  • [26] Havarland, B. (2000). Technical and economical evaluation of energetics biomass use. Nove trendy w prevadzke vyrobnej techniky. 22-23(11), 354-359.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd884dbf-4fe9-4e25-a578-db79e1801f3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.