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Abstract. The development of mathematics stands as one of the most important achieve-

ments of humanity, and the development of the calculus, differential calculus and integral 

calculus is one of the most important achievements in mathematics. Differential calculus is 

about finding the slope of a tangent to the graph of a function or, equivalently, differential 

calculus is about finding the rate of change of one quantity with respect to another quantity. 

On the other hand, integration is an important concept in mathematics and, together with 

its inverse, differentiation, is one of the two main operations in calculus. Integrals and 

derivatives became the basic tools of calculus, with numerous applications in science and 

engineering. The category theory is a mathematical approach to the study of algebraic 

structure that has become an important tool in theoretical computing science, particularly 

for semantics-based research. The notion of a limit in category theory generalizes various 

types of universal constructions that occur in diverse areas of mathematics. In our paper we 

illustrate how to represent some parts of infinitesimal calculus in categorical structures. 

Introduction 

Nowadays science and technology are indispensable parts of the global world. 

Their expansion simplifies the work in many branches and of course the daily life 

[1]. In day to day life we are often interested in the extent to which a change in one 

quantity affects a change in another related quantity. This is called a rate of change. 

Differential calculus, a part of mathematics, is about describing in a precise fashion 

the ways in which related quantities change. Differential and integral calculus are 

dual fields and together they form a base for infinitesimal calculus [2-6]. Infini-

tesimal calculus is a part of mathematics concerned with finding the slope of 

curves, areas under curves, minima and maxima, and other geometric and analytic 

problems. On the other hand, the category theory is an area of study in mathematics 

that examines in abstract way the properties of particular mathematical concepts by 

formalizing them as collections of objects and arrows (called morphisms, although 

this term also has a specific, non category-theoretical meaning), where these col-

lections satisfy some basic conditions [7, 8]. The category theory is a branch of 
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mathematics that has been developed over the last fifty years, and it has been con-

cerned with the study of algebraic structures [9]. Many significant areas of mathe-

matics and informatics can be formalized as categories, and the use of the category 

theory allows many intricate and subtle mathematical results in these fields to be 

stated, and proved, in a much simpler way than without the use of categories. Func-

tions are mostly represented by morphisms from a domain into a codomain of 

a function, and we can consider them as the structures enclosable into a category 

[10]. In our paper we show the rôle of categorical structures in infinitesimal calcu-

lus - we construct a diagram of functions and we show how to find a categorical 

limit of that diagram. In the second part of the article we show how to express 

derivatives in another way in categories. 

1. Basic notions about the category theory 

A category C is a mathematical structure consisting of objects, e.g. ,...,BA  and 

of morphisms of the form BAf →:  between them. Every object has the identity 

morphism AAid
A
→:  and morphisms are composable. Because the objects of 

a category can be arbitrary structures, categories are useful in computer science 

[8, 10], where we often use more complex structures not expressible by sets. 

Morphisms between categories are called functors, e.g. a functor DC→:F  from 

a category C  into a category D  considered as a structure-preserving mapping 

between categories. 

2. Categorical limit 

The notion of a limit in the category theory generalizes various types of univer-

sal constructions that occur in diverse areas of mathematics. It can show very  

precisely how thematically similar constructions of different types of objects, such 

as the product of sets or groups of topological spaces, are instances of the same 

categorical construct [11]. Limits and dually colimits in category C  are defined by 

means of diagrams in C , and we define the categorical limit as limits of diagrams 

[9]. In any category C  a diagram D  consists of: 

• the class of objects 
i

D , for Ii∈ , in category C  

• the set of morphisms ( ) ji,D , which is defined for any two indexes  ji,  as 

a subset of homset 

( ) ( )ji DDHom ji ,D ⊆, . 

For defining the limit of diagram we introduce a notion cone in category. Let G  

be a graph and C  be a category. Let C→G:D  be a diagram in category C . Cone 

in C  (in the Fig. 1) consists of: 
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• the base constructed by diagram D; 

• apex W  together with the family of morphisms { }Iip
i
∈  such that it holds 

ii
DWp →: . 

 

 

Fig. 1. Commutative cone in category 

We usually write a cone as { }
ii

DWp →:  or simply 
ii

DWp →: . A limit of the 

diagram D  is an object W  together with the cone { }
ii

DWp →: , for Ii∈  which 

has the following universal property: 

– for any cone  { }
ii

DXq →:  there exists exactly one morphism WXf →:  such 

that it holds: 

ii
qpf =o  

for all Ii∈ . The limit of the diagram D is depicted in the Figure 2. 
 

 

Fig. 2. The limit of the diagram D 

The limit of the diagram D  is usually written as 

{ }ip
DW

i
→=D lim  

or just .D lim W=  
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3. Categorical structures in integral calculus 

Assume the category of sets for integral calculus Int , where morphisms are 

functions between objects. For instance, the cosine function is the following mor-

phism 

11cos ;−→:R . 

Antiderivative (primitive function) to function cos we denote  p. It holds 

( ) ∫ +== c.xdx xxp sincos  

The value of ( )xp  depends on the value of constant of integration  c. Then we can 

consider the antiderivative as a family of following morphisms: 

iii
cc:Rp ++−→ 11 ;  

for Ii∈ . 

Let { }61;2;3;4;5;=I  be a set of indexes and { }
654321
ccccccC ;;;;;=  be a set of 

constants of integration. Let the values of constants be given by the following 

formula (for Ii∈ ) 

3−= ic
i

. 

We define six antiderivatives to the function cos which differ only in constants 

of integration (Tab. 1). 

Table 1 

Antiderivatives of the cosine function 

i  ic  ip  ( )xpi  

1 –2 131 −−→ ;Rp :  ( )=xp1 sin x – 2 

2 –1 022 ;Rp −→:  ( )=xp2 sin x – 1 

3 0 113 ;Rp −→:  ( )=xp3 sin x 

4 1 204 ;Rp →:  ( )=xp4  sin x + 1 

5 2 315 ;Rp →:  ( )=xp5  sin x + 2 

6 3 2;4R:6 →p  ( )=x6p  sin x + 3 

 

Between the codomains of particular antiderivatives 
i
p  we define functions 

i
v  as 

follows: 
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( )




=−

≤+
=

.ix

ix
xvi

65

51

for

;for
 

Now we can express the functions 
i
v  as follows (Tab. 2). 

Table 2 

Functions in the base of cone 

i  iv  ( )xvi  

1 0;21;3: −→−−1v  ( ) 11 += xxv  

2 11022 ;; −→−:v  ( ) 12 += xxv  

3 20113 ;; →−:v  ( ) 13 += xxv  

4 31204 ;:v →;  ( ) 14 += xxv  

5 42315 ;:v →;  ( ) 1+= xxv5  

6 13426 −−→ ;:v ;  ( ) 56 −= xxv  

 

Next we define the composition of functions 
i
v , and for that we formulate the rela-

tion between domains and codomains of functions 
i
v : 

( )
( )
( )




=

>
=

−

.ivcod

ivcod
vdom

i

i

1

1

6

1

for

;for
 

From the functions 
i
v  we construct the diagram D  in the Figure 3 which repre-

sents the base of a cone. 
 

 

Fig. 3. Diagram of mapping the interval to interval 

Then we construct a commutative cone over the diagram in the Figure 3, such as it 

is depicted in the Figure 4. The existence of a limit of diagram D  we show in the 

following way. Let X  be an arbitrary object of the category Int which is the apex 

of a cone over the diagram D . It means that there exists a family of functions 
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iii
cc:Xq ++−→ 11 ;  

for .Ii∈  It is evident that there exists the only morphism ,Rin: X → which is 

an inclusion. Therefore we can say that the limit of the diagram D  is the set R of 

reals, R=D lim . 

Limit of the diagram D  is depicted in the Figure 5. 

 

 

Fig. 4. Commutative cone of antiderivatives 

 

Fig. 5. Commutative cones of antiderivatives with the limit R 
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4. Categorical structures in differential calculus 

The practical applications of differential calculus are very widely ranging. 

Suffice it to say that differential calculus is an indispensable tool in every branch 

of science and engineering. In elementary mathematics there are two main applica-

tions of differential calculus. One is to help in sketching curves, and the other is 

in optimisation problems [6]. 

We could also say that differential calculus is a procedure for finding the exact 

derivative directly from the formula of a function, without having to use graphical 

methods. In practise we use a few rules that tell us how to find the derivative of 

almost any function that we are likely to encounter. 

The derivative of a function at a chosen input value describes the best linear  

approximation of the function near that input value. Informally, the derivative is 

the ratio of the infinitesimal change of the output over the infinitesimal change of 

the input producing that output. For a real-valued function of a single real variable, 

the derivative at a point equals the slope of the tangent line to the graph of the 

function at that point. The process of finding a derivative is called differentiation. 

The reverse process is called antidifferentiation. The fundamental theorem of cal-

culus states that antidifferentiation is the same as integration. Differentiation and 

integration constitute two fundamental operations in single-variable calculus. 

4.1. Derivatives in category 

For defining the derivatives in category we consider the arrow category 
→

Der  over the category of sets. The arrow category, also called a comma category, 

is defined for each category [12]. Any arrow category 
→

C  over the base category 

C  has as objects all morphisms from the base category. Then morphisms of the 

arrow category are morphisms defined as tuples between domains and codomains 

of objects. 

Because the derivative 'f  to function f  is also a function, we can construct the 

base category as a category of sets Der , where objects are sets (the domains and 

codomains of functions) and morphisms are functions. The arrow category →

Der  

over a base category of sets exists according to the definition, so we can define any 

function as an object in arrow category. Morphisms of →

Der  are the operations of 

differentiation which assign to any function f  its derivative 'f  according to the 

definition. 

The category 
→

Der  is defined as follows: 

1. objects are functions ...hgf ,,,  and their derivatives ...'ff ,,  . The functions are 

arrows in the base category Der ; 

2. morphisms are tuples ( )CD,  of mappings between domains and codomains 

of objects: 
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( ) 'ffD,C →: , 

is a differentiation operation which assigns to function f its derivative 'f , 

where D is a mapping between domains and C between codomains. The tuple 

( )CD,  we denote as der morphism. 

3. for any object f \there an identity morphism is defined which sends any object 

to itself: 

ffid f →: . 

4. composition of morphisms is defined as follows: for two morphisms 
'ffder →:

1
 and ''f'fder →:

2
, their composition ''ffderder →:

12
o  is a new 

morphism that assigns to function f  it’s the second derivative, because the first 

derivative of 'f  is defined as follows, ( ) f''''f = . 

5. composition of morphisms is an associative operation defined as follows: 

( ) ( )
123123

derderderderderder oooo = . 

The codomain functor DerDer →
→

:Cod  always exists. It assigns to any 

object f  in →

Der  its codomain ( )fcod  in Der , and to any morphism 

f'fder →:  in →

Der  the arrow between codomains of der in Der  (Fig. 6). 

 

 

Fig. 6. The codomain functor between categories 

4.2. Example of expressing the derivatives in category 

For instance we take the function of natural logarithm, ( ) xxf ln=  which has the 

following specification: 
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( ) R;f: →∞0 . 

The logarithmic function is a morphism with the domain of positive real numbers 

and the codomain is the set of all real numbers. When finding the derivative of 

function, we use rules for derivation. For a logarithmic function its derivative is as 

follows: 

( ) ( )
x

'xx'f
1

ln == , 

which is a well-known basic reciprocal linear rational function, simply called  

a reciprocal function. This function is defined on the set of non-zero reals, and 

it sends every real number to its reciprocal value, i.e. its multiplication inverse. 

The reciprocal function ( )
x

x'f
1
=  has the specification 

{ } { },00 R\:R\'f →  

where both the domain and the codomain are both the same - the set of nonzero 

real numbers. The second derivative of ( ) xxf ln=  is the first derivative of 

reciprocal function ( )
x

x'f
1
=  and it is the function 

( )
2

1

x
x''f −=  

which has the specification 

{ } ( ).0;0\R: ∞−→''f  

All functions listed above are depicted in the Figure 7. 

 

 

Fig. 7. Natural logarithm function and its first and second derivative 
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It holds that second derivative of xln  is a function ( )
2

1

x
x''f −=  which is the first 

derivative of function ( )
x

x'f
1
= , 

( ) ( )( )'x'fx''f = . 

In the category Der , the functions 'ff ,  and ''f  are the following morphisms 

in category: 
 

( ) R;f: →∞0  ( ) ( )∞= ;fdom 0  ( ) Rfcod =  

{ } { }0\0\ R:R'f →  ( ) { }0\R'fdom =  ( ) { }0\R'fcod =  

{ } ( )0;0\ ∞−→:R''f  ( ) { }0\R''fdom =  ( ) ( )0;∞−=fcod  

 

and the sets ( )∞;0 , R , { }0\R  and ( )0;∞−  are objects in this category. For any 

object A  the identity morphism is defined as follows: 

AAid
A

→: , 

and morphisms are composable according to the obvious rules for composition 

of functions. 

In category →

Der  the functions 'ff ,  and ''f  are objects in this category. 

The morphisms between objects are differentations, denoted der : 

'ffder →: , 

and they are defined as tuples of two arrows for mapping of domains and codo-

mains of objects, ( )D,Cder = , where 

( ) ( )
( ) ( ).:

,:

'fcodfcodC

'fdomfdomD

→

→

 

The identity is defined for each object, 

ffid f →: , 

is the zero derivation which is an identity mapping: it sends any function to itself. 

The composition of functions represents the gradual increasing of order of differen-

tiation. Here, for the functions ( )
x

xf'
1
=  and ( )

2

1

x
xf'' −= , the differentiations are: 

• 'ffder →:
1

 for the first derivative of ;f  

• ''f'fder →:
2

 for the first derivative of ;'f  
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By composition of 
1

der  and 
2

der  we obtain a new morphism 
12

derder o  (we can 

denote it also
12

der ): 

''ffderder →:
12

o  

and it is the second derivative of :f  

( ) ( )
2

1
ln

x
''xx''f −== . 

For the composition it holds the following commutative diagram (Fig. 8). 

 

 

Fig. 8. Diagram of second derivative 

From the diagram in Figure 8 the following equality holds: 

1212
'' DDffCC oooo = . 

The relation between categories Der  and →

Der  is expressed by the codomain 

functor 

DerDer →
→

:Cod . 

This functor assigns to every object is →

Der  its codomain - a set in Der  

( ) BfCod =  

for any BAf →: , and any morphism in →

Der  it sends to a morphism between the 

appropriate codomains: 

( ) CderCod =  

for any 'ffder →: , where morphism C  is 

( ) ( ).: 'fcodfcodC →  
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Conclusion 

In this paper we have shown the construction of diagram of antiderivatives in 

categories. We constructed a commutative cone of antiderivatives to the cosine 

function and we defined a family of functions for the base of commutative cone 

of functions. Finally, we found a limit of the diagram of functions. The second part 

of the article follows our approach for derivatives. The aim of our paper was an 

illustration of usability of categories in various fields of mathematics. Our next 

goal is to investigate how to implement mathematical expressions of some parts of 

infinitesimal calculus in practical approach [13]. 
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Zusammenfassung. Die Theorie von Kategorien ist der Bereich von Mathematik und sie 

dient vor allem für das Studium der algebraischen Strukturen. Sie wird aber sehr oft auch 

in Informatik geltend gemacht. Manche bedeutende mathematische Bereiche kann man 

mithilfe der Kategorien darstellen und das ermöglicht mit den mathematischen Strukturen 

viel einfacher zu arbeiten als ohne Anwendung der Kategorien. Der Grund der Infinitesi-

malrechnung bilden zwei duale Bereiche - Differential- und Integralrechnung. In unserem 

Beitrag orientieren wir uns auf die Konstruktion des Diagramms von Stammfunktionen zur 

Funktion Kosinus. Von diesen Funktionen konstruieren wir den kommutativen Kegel und 

wir finden seinen Grenzwert. In dem zweiten Teil des Artikels zeigen wir den Ausdruck 

der Derivationen von Funktionen in der Kommakategorie und wir konstruieren den kodo-

mänen Funktor zwischen der Kategorie der Derivationen und der Kategorie der Mengen 

für differenzierbare Funktionen. 


