PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sieci metalo-organiczne typu MOF jako przykład mateiałów wykorzystywanych w ukierunkowanej terapii przeciwnowotworowej

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
MOF-type metal-organic networks as an example of materials used in targeted anti-cancer therapy
Języki publikacji
PL
Abstrakty
EN
MOF materials (metal-organic frameworks) are a relatively organic-inorganic (hybrid) materials. Due to very good adsorption properties, large specific surfaces and large pore volumes, these compounds are quite intensively studied, and the number of organic-inorganic hybrids obtained is growing year by year. Most MOF compounds are crystalline two- or three-dimensional organometallic structures. They are an example of hybrid materials that are made of both inorganic and organic component. The inorganic part is represented by metal ions/clusters, while the organic skeleton contains neutral or charged organic linkers [1-3]. The most common metal cations included in organometallic lattices are: Zn2+, Cu2+, Cr3+, Al3+ and Mg 2+. Organic ligands can be neutral, positively or negatively charged, but they must be primarily electron pair donors, which means that they have nitrogen or oxygen-containing functional groups in their structure. Ligands’ role is to stitch these building units together to create extended framework structures, while metal ions provide structural integrity and durability. These materials have a well-developed specific surface and a large pore volume (570-3800 m2/g). Thanks to the presence of coordination bonds in the structure, the skeletons of organometallic networks are flexible. Based on literature data, several methods of cancer treatment using MOFs are distinguished, e.g.: using passive targeting, active targeting, physicochemical targeting, and in a particular case using all three strategies (Fig. 2, Table 1) [12,13]. The ongoing work on the modification of the synthesized MOF structures based on zinc ions allows the preparing various types of cancer drugs based on their durability and high porosity. The ability to synthesize multifunctional Zn-MOFs is a new chapter in the design of chemotherapeutic agents. A particular example is ZIF-8. The combination of different strategies for the influence of the pH value of the environment or photochemical elements gives the opportunity to use the compounds in imaging and cancer diagnosis.
Rocznik
Strony
35--53
Opis fizyczny
Bibliogr. 57 poz., rys. tab, wykr.
Twórcy
  • Pracownia Chemii Cukrów, Wydział Chemii UG, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Pracownia Chemii Cukrów, Wydział Chemii UG, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Pracownia Chemii Cukrów, Wydział Chemii UG, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Pracownia Chemii Cukrów, Wydział Chemii UG, ul. Wita Stwosza 63, 80-308 Gdańsk
autor
  • Pracownia Chemii Cukrów, Wydział Chemii UG, ul. Wita Stwosza 63, 80-308 Gdańsk
Bibliografia
  • [1] E. Sayed, D. Yuan, Green Chemistry, 2020, 22, 4082
  • [2] V. Stavila, A. A. Talin, M. D. Allendorf, Chem. Soc. Rev., 2014, 43, 599
  • [3] W .Liang, R. Ricco, N.K. Maddigan, R. P. Dickinson, H. Xu, Q.Li, Ch.J. Sumby, S.G. Bell, P. Falcaro, Ch.J. Doonan, Chem. Mater., 2018, 30(3), 106
  • [4] X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, Ch. Lollar, X. Wanga, H.-C. Zhou, Chem. Soc. Rev., 2017, 46, 3386
  • [5] Z. Lai, Curr. Opin. Chem. Eng., 2018, 20, 78
  • [6] S. Szeligowska, J. Choma, M. Jaroniec, Wiad. Chem., 2017, 5-6, 299
  • [7] P. Rocío-Bautista, I. Taima-Mancera, J. Pasán, V. Pino, Separations, 2019, 6, 33
  • [8] I. Kurzydym, I. Czekaj, Tech. Trans., 2020, 12, 1
  • [9] J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, Ch.-Y. Su, Chem. Soc. Rev, 2014, 43, 6011
  • [10] T. Lech, J.K. Sadlik, Biol. Trace. Elem. Res., 2007, 118, 10
  • [11] T. Lech, J.K. Sadlik, Biol. Trace. Elem. Res., 2011, 142, 11
  • [12] A. Baeza, M. Colilla, M. Vallet-Regi, Expert Opin. Drug Deliv., 2015, 12, 319
  • [13] M. Cai, G. Chen, L. Qin, Ch. Qu, X. Dong, J. Ni, X. Yin, Pharmaceutics, 2020, 12(3), 232
  • [14] H.Q. Zheng, Y.N. Zhang, L.F. Liu, W. Wan, P. Guo, A.M. Nystrom, X.D. Zou, J. Am. Chem. Soc., 2016, 138, 962
  • [15] H.Y. Zhang, W. Jiang, R.L. Liu, J. Zhang, D. Zhang, Z.H. Li, Y.X. Luan, ACS Appl. Mater. Interfaces, 2017, 9, 19687
  • [16] F.M. Zhang, H. Dong, X. Zhang, X.J. Sun, M. Liu, D.D. Yang, X. Liu, J.Z. Wei, ACS Appl. Mater. Interfaces, 2017, 9, 27332
  • [17] H.Z. Yu, X.Y. Qiu, P. Neelakanda, L. Deng, N.M. Khashab, S.P. Nunes, K.V. Peinemann, Sci. Rep., 2015, 5, 15275
  • [18] B.C. Yang, M. Shen, J.Q. Liu, F. Ren, Pharm. Res., 2017, 34, 2440
  • [19] X.G. Wang, Z.Y. Dong, H. Cheng, S.S. Wan, W.H. Chen, M.Z. Zou, J.W. Huo, H.X. Deng, X.Z. Zhang, Nanoscale, 2015, 7, 16061
  • [20] S. Sharma, K. Sethi, I. Roy, New J. Chem., 2017, 41, 11860
  • [21] J. Jia, Y. Zhang, M. Zheng, C. Shan, H. Yan, W. Wu, X. Gao, B. Cheng, W. Liu, Y. Tang, Inorg. Chem., 2018, 57, 300
  • [22] S.Y. Li, H. Cheng, B.R. Xie, W.X. Qiu, J.Y. Zeng, C.X. Li, S.S. Wan, L. Zhang, W.L. Liu, X.Z. Zhang, ACS Nano, 2017, 11, 7006
  • [23] J. Jia, Y. Zhang, M. Zheng, C. Shan, H. Yan, W. Wu, X. Gao, B. Cheng, W. Liu, Y. Tang, Inorg. Chem., 2018, 57, 300
  • [24] R.C. Huxford, K.E. deKrafft, W.S. Boyle, D.M. Liu, W.B. Lin, Chem. Sci., 2012, 3, 198
  • [25] X. Gao, M. Zhai, W. Guan, J. Liu, Z. Liu, A.J.A.A.M.I. Damirin, ACS Appl. Mater. Interfaces, 2017, 9, 3455
  • [26] X.C. Gao, X. Hai, H. Baigude, W.H. Guan, Z.L. Liu, Sci. Rep., 2016, 6, 37705 52 J. SAMASZKO-FIERTEK, A. KHALATTYAN, B. DMOCHOWSKA, R. ŚLUSARZ, J. MADAJ
  • [27] H. Dong, G.X. Yang, X. Zhang, X.B. Meng, J.L. Sheng, X.J. Sun, Y.J. Feng, F.M. Zhang, Chem. A Eur. J., 2018, 24, 17148
  • [28] A.K. Ebrahimi, M. Barani, I. Sheikhshoaie, Mater. Sci. Eng. C Mater. Biol. Appl., 2018, 92, 349
  • [29] D. Hu, H.X. Xu, B. Xiao, D.D. Li, Z.X. Zhou, X.R. Liu, J.B. Tang, Y.Q. Shen, Acs Appl. Mater. Interfaces, 2018, 10, 34974
  • [30] X.C. Cai, X.R. Deng, Z.X. Xie, Y.S. Shi, M.L. Pang, J. Lin, Chem. Eng. J., 2019, 358, 369
  • [31] J. Wang, Y. Fan, Y. Tan, X. Zhao, ACS Appl. Mater. Interfaces, 2018, 10, 36615
  • [32] D. Laha, K. Pal, A.R. Chowdhuri, P.K. Parida, S.K. Sahu, K. Jana, P. Karmakar, New J. Chem., 2019, 43, 217
  • [33] W. Cai, H.Y. Gao, C.C. Chu, X.Y. Wang, J.Q. Wang, P.F. Zhang, G. Lin, W.G. Li, G. Liu, X.Y. Chen, ACS Appl. Mater. Interfaces, 2017, 9, 2040
  • [34] H. Kaur, G.C. Mohanta, V. Gupta, D. Kukkar, S. Tyagi, Journal of Drug Delivery Science and Technology, 2017, 41, 106
  • [35] Y.-R. Lee, M.-S. Jang, H.-Y. Cho, H.-J. Kwon, S. Kim, W .-S.Ahn, Chemical Engineering Journal, 2015, 271, 276
  • [36] A. Elaouni, M. El Ouardi, M. Zbair, A. Ba Qais, M. Saadi, H. Ait Ahsaine, RSC Adv., 2022, 12, 31801
  • [37] J.S. Barbosa, F.Figueira, S.S. Bragab, F.A.A. Paz, Metal-Organic Frameworks for Biomedical Applications, 2020, 69
  • [38] B. Soltani, H. Nabipour and N. A. Nasab, J. Inorg. Organomet. Polym. Mater., 2017, 28, 1090
  • [39] X. C. Gao, X. Hai, H. Baigude, W. H. Guan and Z. L. Liu, Sci. Rep., 2016, 6, 37705
  • [40] M.Wu, H.L.Ye, F.Q.Zhao, B.Z.Zeng, Sci. Rep., 2017, 7, 39778
  • [41] M. X. Wu, Y.W. Yang, Adv. Mater., 2017, 29(23), 1606134
  • [42] W. K. Kim, Y. Pyee, H. J. Chung, H. J. Park, J. Y. Hong, K. H. Son, S. K. Lee J. Nat. Prod., 2016, 79(4), 1097
  • [43] S. Li, C. Zhang, W. Cao, B. Ma, X. Ma, S. Jin, J. Zhang, P.C. Wang, F. Li, X.-J. Liang, J. Mater. Chem. B, 2015, 3(16), 3324
  • [44] S. Li, K. Wang, Y. Shi, Y. Cui, B. Chen, B. He, W. Dai, H. Zhang, X. Wang, C. Zhong, H. Wu, Q. Yang, Q. Zhang, Adv. Funct. Mater. 2016, 26(16), 2715
  • [45] Z. Tian, X. Yao, Y. Zhu, Microporous Mesoporous Mater., 2017 , 237, 160
  • [46] J. Deng, K. Wang, M. Wang, P. Yu, L. Mao, J. Am. Chem. Soc., 2017 , 139(16), 5877
  • [47] H.Q. Zheng, C.B. Gao, B.W. Peng, M.H. Shu, S.N. Che, J. Phys. Chem. C, 2011, 115(15), 7230
  • [48] H.Q. Zheng, L. Xing, Y.Y. Cao, S.A. Che, Coord. Chem. Rev., 2013 , 257, 1933
  • [49] I. Mitrus, S. Szala, Journal of Oncology, 2009, 59, 5, 368
  • [50] X. Chen, R. Tong, Z. Shi, B. Yang, H. Liu, S. Ding, X. Wang, Q. Lei, J. Wu, W. Fang, ACS Appl. Mater. Interfaces, 2018, 10, 2328
  • [51] Z.Z. Liang, Z.Y. Yang, H.T. Yuan, C. Wang, J. Qi, K.Q. Liu, R. Cao, H.Q. Zheng, Dalton Trans., 2018, 47, 10223
  • [52] X.L. Zhang, Y.Y. Zeng, A.X. Zheng, Z.X. Cai, A.M. Huang, J.H. Zeng, X.L. Liu, J.F. Liu, Microchim. Acta, 2017, 184, 1933
  • [53] J.-T Yi, T.-T. Chen, J. Huo, X. Chu, Anal. Chem., 2017, 89, 12351
  • [54] M.R. Song, D.Y. Li, F.Y. Nian, J.P. Xue, J.J. Chen, J. Mater. Sci., 2018, 53, 2351
  • [55] Z.Q. Shi, X.R. Chen, L. Zhang, S.P. Ding, X. Wang, Q.F. Lei, W.J. Fang, Biomater. Sci., 2018, 6, 2582 [56] W. Jiang, H. Zhang, J. Wu, G. Zhai, Z. Li, Y. Luan, S. Garg, ACS Appl. Mater. Interfaces, 2018, 10, 34513
  • [57] K. Dong, Y. Zhang, L. Zhang, Z.Z. Wang, J.S. Ren, X.G. Qu, Talanta, 2019, 194, 703
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd808df2-61c1-46b5-99cd-c6d08b2f6a88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.