PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis, microstructure and mechanical properties of bronze–molybdenum composites processed via LPS and SPS methods

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, synthesis, densification and properties of bronze–70 wt% Mo and bronze–30 wt% Mo composite powders were investigated. The composite powders were prepared by mechanical milling of bronze–Mo powder mixtures for 16 h. The results of cold compressibility investigations showed that Heckel and Ge equations provided the best fit scenario for bronze–70 wt% Mo and bronze–30 wt% Mo, respectively. The composite powders were consolidated via pressureless and spark plasma sintering processes. The relative densities of spark plasma sintered samples with 30 and 70 wt% molybdenum were about 98%. However, the relative density of bronze–70 wt% Mo and bronze–30 wt% Mo pressureless sintered samples were 97.1 and 94.3%, respectively. The scanning electron microscopy observations revealed that the size and dispersion of Mo particles within the bronze matrix in the pressureless sintered samples was completely different from that of the spark plasma sintered ones. Furthermore, it was found that in spite of nearly close relative densities, the hardness and flexural strength of the spark plasma sintered samples were higher than that of the pressureless sintered ones which was due to different shape, size and dispersion of the Mo particles within the matrix phase in the different samples. According to the results, the preferred densification process was SPS method.
Rocznik
Strony
1013--1023
Opis fizyczny
Bibliogr. 22 poz., fot., rys., wykr.
Twórcy
autor
  • Department of Materials Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Materials Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Materials Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • [1] Powder Metal Technologies and Applications (ASM Handbook Vol. 7), ASM International, USA, 1998.
  • [2] Q. Zhang, S. Liang, L. Zhuo, Fabrication and properties of the W–30 wt%Cu gradient composite with W@WC core–Stell structure, J. Alloys Compd. 708 (2017) 796–803.
  • [3] K. Wetzel, C. Kowanda, M. Heilmaier, F.E.H. Mueller, The influence of microstructural features on the electrical conductivity of solid phase sintered CuCr composites, J. Alloys Compd. 631 (2015) 237–247.
  • [4] Q.Z. Wang, C.X. Cui, D.M. Lu, S.J. Bu, Fabrication and properties of a novel ZnO/Cu composite, J. Mater. Process. Technol. 210 (3) (2010) 497–503.
  • [5] O. Guler, E. Evin, The investigation of contact performance of oxide reinforced copper composite via mechanical alloying, J. Mater. Process. Technol. 209 (2009) 1286–1290.
  • [6] K.K. Chawla, Composite Materials Science and Engineering, Springer, 2012.
  • [7] N. Chawla, K.K. Chawla, Metal Matrix Composites, Springer, 2006.
  • [8] H. Xing, X. Cao, W. Hu, L. Zhao, J. Zhang, Interfacial reactions in 3D-SiC network reinforced Cu-matrix composites prepared by squeeze casting, Mater. Lett. 59 (12) (2005) 1563–1566.
  • [9] J. Grzonka, M.J. Kruszewski, M. Rosiński, L. Ciupiński, A. Michalski, K.J. Kurzydłowski, Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route, Mater. Charact. (99) (2015) 188–194.
  • [10] F.A. Costa, A.G.P. Silva, U.U. Gomes, The influence of the dispersion technique on the characteristics of the W–Cu powders and on the sintering behavior, Powder Technol. (134) (2003) 123–132.
  • [11] J. Cheng, P. Song, Y. Gong, Y. Cai, Y. Xia, Fabrication and characterization of W–15Cu composite powders by a novel mechano-chemical process, Mater. Sci. Eng. A (488) (2008) 453–457.
  • [12] Y. Li, X. Qu, Z. Zheng, C. Lei, Z. Zou, S. Yu, Properties of W–Cu composite powder produced by a thermo-mechanical method, Int. J. Refract. Met. Hard Mater. (21) (2003) 259–264.
  • [13] M. Ardestani, H.R. Rezaie, H. Arabi, H. Razavizadeh, The effect of sintering temperature on densification of nanoscale dispersed W–20-40%wt Cu composite powders, Int. J. Refract. Met. Hard Mater. (27) (2009) 862–867.
  • [14] D. Garbiec, M. Jurczyk, N. Levintant-Zayonts, T. Mościcki, Properties of Al–Al2O3 composites synthesized by spark plasma sintering method, Arch. Civil Mech. Eng. 15 (4) (2015) 933–939.
  • [15] L. Wang, J. Zhang, W. Jiang, Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering, Int. J. Refract. Met. Hard Mater. (39) (2013) 103–112.
  • [16] P. Dong, Z. Wang, W. Wang, S. Chen, J. Zhou, Understanding the spark plasma sintering from the view of materiale joining, Scr. Mater. (123) (2016) 118–121.
  • [17] K.S. Mohammed, A. Rahmat, A. Aziz, Self-compacting high density tungsten-bronze composites, J. Mater. Process. Technol. (213) (2013) 1088–1094.
  • [18] B. Gowon, K.S. Mohammed, S.B.B. Jamaluddin, Z. Hussain, P. Evarastics, The effects of sintering temperature on the densification of mechanically alloyed W–brass composites, Open J. Metal (5) (2015) 19–26.
  • [19] D. Jeyasimman, K. Sivaprasad, S. Sivasankaran, R. Narayanasamy, Fabrication and consolidation behavior of Al 6061 nanocomposite powders reinforced by multi-walled carbon nanotubes, Powder Technol. (258) (2014) 189–197.
  • [20] S.R. Hashemi, M. Ardestani, A. Nemati, Cold compaction behavior and pressureless sinterability of ball milled WC and WC/Cu powders, Sci. Sinter. (48) (2016) 71–79.
  • [21] A.S. Namini, M. Azadbeh, A. Mohammadzadeh, S. Shadpour, Liquid phase sintering of leaded tin bronze alloyed powder, Trans. Indian Inst. Metals 69 (7) (2016) 1377–1388.
  • [22] R.M. German, Powder Metallurgy and Particulate Materiale Processing, Metal Powder Industries Federation, Princeton, 2005.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd79d5d4-f953-405e-95fe-f7733327b581
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.