PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Antibiofilm and antifouling activities of extracellular polymeric substances isolated from the bacteria associated with marine gastropod Turbo sp.

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The extracellular polymeric substances (EPS) produced by the bacteria associated with the gastropod Turbo sp. were isolated and screened for antibacterial activity against biofilm-forming bacteria. EPS of five out of 13 strains showed inhibitory activities in the antibacterial assay. Furthermore, the antibiofilm and antifouling activity of the most active EPS isolated from the strain KT1 was studied using various in vitro and in vivo bioassays. Results revealed that EPS significantly inhibited the growth and biofilm formation of bacteria. Furthermore, the antifouling coating developed with bacterial EPS considerably reduced the recruitment of fouling organisms on coated surfaces submerged in the seawater. The functional groups present in EPS, characterized by strong activity,were analyzed using FT-IR and the spectrum showed the presence of alcohol, amines, carboxylic acid and esters. The bacterium responsible for the production of bioactive EPS was identified as Pseudomonas aeruginosa, using the 16S rRNA gene. Since the findings of this study revealed the antibiofilm and antifouling activities of EPS, further long term field tests and characterization of the bioactive compound of the EPS could lead to the development of eco-friendly antifouling coating.
Rocznik
Strony
11--19
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
  • Centre for Marine Science and Technology, Manonmanium Sundaranar University, Rajakkamangalam, Kanyakumari, Tamilnadu, India
autor
  • Department of Marine Biology, Faculty of Marine Sciences, King Abdulazuz University, Jeddah, Saudi Arabia
  • Centre for Marine Science and Technology, Manonmanium Sundaranar University, Rajakkamangalam, Kanyakumari, Tamilnadu, India
Bibliografia
  • [1]. Arciola, C.R., Campoccia, D., Gamberini, S., Cervellati, M., Donati, E. et al. (2002). Detection of slime production by means of an optimised Congo red agar plate test based on a colourimetric scale in Staphylococcus epidermidis clinical isolates genotyped for ica locus. Biomaterials. 23: 4233-4239.
  • [2]. Armstrong, E., Boyd, K.G. & Burgess, J.G. (2000). Prevention of marine biofouling using natural compounds from marine organisms. Biotechnol. Ann. Rev. 6: 221-241.
  • [3]. Balamurugan, G. & Prakash, S. (2012). Extraction, partial characterization and antibacterial efficacy of extra cellular polysaccharides from Bacillus Licheniformis and Klebsiella Pneumoniae isolated from root nodule of Tephrosia Purpurea. Int. J. Pharma. Bio. Sci. 3(3): 306¬316.
  • [4]. Bazes, A., Alla, A., Philippe, D., Fabienne, F., Nelly, K. et al. (2009). Investigation of the antifouling constituents from the brown alga Sargassum muticum (Yendo) Fensholt. J. Appl. Phycol. 21: 395-403. DOI: 10.1007/s10811-9382-9.
  • [5]. Burgess, J.G., Jordan, E.M., Bregu, M., Mearns-Spragg, A. & Boyd, K.G. (1999). Microbial antagonism: a neglected avenue of natural products research. J. Biotechnol. 70: 27¬32.
  • [6]. Champ, M.A. (2000). A review of organotin regulatory strategies, pending actions, related costs and benefits. Sci. Total Envir. 258: 21-71. DOI: 10.1016/30048- 9697(00)00506-4.
  • [7]. Clare, A.S. (1998). Towards non-toxic antifouling. J. Mar. Biotechnol. 6: 3-6.
  • [8]. Deighton, M.A. Capstick, J. Domalewski, E. & Nguyen, T. (2001). Methods for studying biofilms produced by Staphylococcus epidermidis. Methods Enzymol. 336: 177¬195.
  • [9]. Donia, M. & Hamann, M.T. (2003). Marine natural products and their potential applications as anti-infective agents. Lancet. Infect. Dis. 3: 338-348.
  • [10]. Evans, S.M. (2001). Anti-fouling materials. Newcastle University, Tyne and Wear, London, pp. 170-176.
  • [11]. Fenical, W. (1993). Chemical studies of bacteria: developing a new resource. Chem. Rev. 93: 1673-1683. DOI: 10.1021/ cr00021a001.
  • [12]. Ferris, G.G. & Beveridge, TJ. (1985). Functions of bacterial cell surface structures. Bio. Science. 35: 172-177.
  • [13]. Fingerman, S.W. (1988). Environmental pollution by heavy metals from antifouling compounds. In: M.F. Thompson, R. Sarojini, R. Nagabhushanam (Eds.). Marine Biodeterioration: Advanced techniques applicable to the Indian Ocean. Oxford & IBH. New Delhi 781-789.
  • [14]. Fletcher, M. & Floodgate, G.D. (1973) An electron microscope demonstration of acidic polysaccharide involved in adhesion of a marine bacterium to solid surfaces. J. Gen. Microbiol. 74: 325-334.
  • [15]. Frolund, B., Palmgren, R. & Keiding, K. (1996). Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water. Res. 30(8): 1749-1758.
  • [16]. Fusetani, N. (2004). Biofouling and antifouling. Nat. Prod. Rep. 21: 94-104. DOI: 10.1039/b302231p.
  • [17]. Gauthier, M.J. & Flatau, G.N. (1976) Antibacterial activity of marine violet - pigmented Alteromonas with special reference to the production of brominated compounds. Canad. J. Microbiol. 22: 1612-1619.
  • [18]. Ghaima, K.K., Rasheed, S.F. & Ahmed, E.F. (2013). Antibiofilm, antibacterial and antioxidant activities of water extract of Calendula officinalis flowers. Int. J. Biolo. Pharma. Res. 4(7): 465-470.
  • [19]. Gulder, T.A.M. & Moore, B.S. (2009).Chasing the treasures of the sea - bacterial marine natural products. Curr. Opin. Microbiol. 12: 252-260. DOI: 10.1016/j.rnib.2009.05.002.
  • [20]. Haefner, B. (2003). Drugs from the deep: marine natural products as drug candidates. Drug. Discov. Today. 8: 536¬544.
  • [21]. Harraghy, N., Seiler, S., Jacobs, K., Hannig, M., Menger, M.D. & Herrmann, M. (2006). Advances in in vitro and in vivo models for studying the staphylococcal factors involved in implant infections. Int. J. Artific. Org. 29: 368-378.
  • [22]. Imhoff, J.F., Labes, A. & Wiese, J. (2011). Bio-mining the microbial treasures of the ocean: New natural products. Biotechnol. Adv. 29: 468-82. DOI: 10.1016/j. biotechadv.2011.03.001.
  • [23]. Isnansetyo, A. & Kamei, Y. (2003). Pseudoalteromonas phenolica sp. a novel marine bacterium that produces phenolic anti-methicillinresistant substances against Staphylococcus aureus. Int. J. Syst. Evol. Microbiol. 53: 583-588.
  • [24]. Jayatilake, G.S., Thornton, M.P., Leonard, A.C., Grimusade, J.E. & Baker, B. J. (1996). Metabolites from an antartic sponge associted bacterium Pseudomonas aeruginosa. J. Nat. Prod. 59: 292-296.
  • [25]. Karwacki, M.T., Kadouri, D.E., Bendaoud, M., Izano, E.A., Sampathkumar, V. et al. (2013). Antibiofilm Activity of Actinobacillus pleuropneumoniae Serotype 5 Capsular Polysaccharide. PLoS ONE. 8(5): e63844. DOI: 10.1371/ journal.pone.0063844.
  • [26]. Kirchman, D.L., Ducklow, H.W. & Mitchell, R. (1982). Estimates of bacterial growth from changes in uptake rates and biomass. Appl. Environ. Microbiol. 44: 1296¬1307.
  • [27]. Kodani, S., Imoto, A., Mitsutani, A. & Murakami, M. (2002). Isolation and identification of the anti algal compound, harmane (1-methyl-b-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1, J. Appl. Phycol. 14: 109-114.
  • [28]. Lemos, M.L., Toranzo, A.E. & Barja, L.J. (1986). Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microbial. Ecolo. 11: 149-163.
  • [29]. Limna Mol, V.P., Raveendran, T.V.& Parameswaran, P. S. (2009). Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick). Int. Biodeter. Biodegr. 63: 67-72. DOI: 10.1016/j.ibiod.2008.07.001.
  • [30]. Omae, I. (2003). General aspects of tin-free antifouling paints. Chem. Rev. 103: 3431- 3448. D0I:10.1002/aoc396.
  • [31]. Peppiatt, C.J., Armstrong, E., Pisacane, T. & Burguess, J.G. (2000). Antibacterial activity of resin based coatings containing marine microbial extracts. Biofouling. 16: 225-234. DOI: 10.1080/08927010009378447.
  • [32]. Punitha, S.M.J., Viju, N., Sharmin Vini, S., Sunjay Shanker, C.V., Michael Babu, M. et al. (2014) Antibacterial activity of bacteria associated with of gastropod. Int. J. Pure. Appl. Microbiol. 7(4): 2879-2884.
  • [33]. Querellou, J. (2003). Biotechnology of marine extremopiles. J. Thromb. Haemost. 1: 12- 18.
  • [34]. Rajasree, V., Satheesh, S. & Prakash Vincent, S.G. (2012). Antifouling activity of a marine epibiotic bacterium from the seaweed sargassum wightii. Thalassas. 28(2): 37-43.
  • [35]. Rajasree, V., Sunjaiy Shankar, C.V., Satheesh, S. & Punitha, S.M.J. (2014). Biofilm inhibitory activity of extracellular polymeric substance produced by Exiguobacterium sp. associated with the polychaete Platynereis dumerilii. Thalassas. 30(2): 13-19.
  • [36]. Satheesh, S., Soniamby, A.R., Sunjaiy Shankar, C.V. & Punitha, S.M.J. (2012). Antifouling Activities of Marine Bacteria Associated with Sponge (Sigmadocia sp.). J. Ocean. Univ. China. 11: 354-360. DOI: 10.1007/s11802- 012-1927-5.
  • [37]. Sayem, S., Manzo, M. E., Ciavatta, L., Tramice, A., Cordone, A., De Felice, A. Z. M. & Varcamonti, M. (2011) Antibiofilm activity of an exopolysaccharide from a spongeassociated strain of Bacillus licheniformis. Microb. Cell. Fact. 10: 74. DOI: 10.1186/1475-2859-10-74.
  • [38]. Sunjaiy Shankar, C.V., Jeba Malar, A.H. & Mary Josephine Punitha, S. (2010). Antimicrobial activity of marine bacteria associated with Polychaetes. Biores. Bull. 1: 24¬28.
  • [39]. Sutherland, I.W. (1997). Microbial exopolysaccharides- structural subtleties and their consequences. Pure. Appl. Chem. 69: 1911-1917.
  • [40]. Thakur, R.P., Rai, K.N., Rao, V.P. & Rao, A.S. (2001). Genetic resistance in pearl millet male-sterile lines to diverse pathotypes of Sclerospora graminicola. Plant. Dis. 85: 621-626.
  • [41]. Uzair, B., Ahmed, N., Ahmed, V. & Kousar, F. (2006). A new antibacterial compound produced by indigenous marine bacteria; fermentation, isolation and biological activity. Nat. Proc. Res. 20: 1326-133.
  • [42]. Valle, J., Da Re, S., Henry, N., Fontaine, T., Balestrino, D. et al. (2006). Broadspectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc. Natl. Acad. Sci. USA. 103: 12558-12563. DOI: 10.1073/PNAS.0605399103.
  • [43]. Viju, N., Anitha, A., Sharmin Vini, S., Sunjaiy Shankar, C.V., Satheesh, S. et al. (2014). Antibiofilm activities of extracellular polymeric substances produced by bacterial symbionts of seaweeds. Ind. J. Mar. Sci. 43(11): 2136¬2146.
  • [44]. Viju, N., Satheesh, S. & Vincent Prakash, S.G. (2013). Antibiofilm activity of coconut (Cocos nucifera Linn.) husk fibre extract. Saudi. J. Biol. Sci. 20: 85-91. DOI: 10.1016/j.sjbs.2012.11.002.
  • [45]. Wozniak, D.J., Wyckoff, T.J.O., Starkey, M., Keyser, R., Azadi, P. et al. (2003). Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc. Natl. Acad. Sci. USA. 100: 7907.
  • [46]. Yebra, D.M., Kiil, S. & Dam-Johansen, K. (2004). Review. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 50: 75-104. DOI: 10.1016/j.porgcoat.2003.06.001.
  • [47]. Zhang, J., Shen, Y. Liu, J. & Wei. D. (2005). Antimetastatic effect of prodigiosin through inhibition of tumor invasion. Biochem. Pharmacol. 69 (3): 407-414. DOI: 10.1016/j.bcp.2004.08.037.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd78f1f8-bf20-4213-846b-c30a55ef8c5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.