PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low-temperature pyrolysis of oily sludge : roles of Fe/Al-pillared bentonites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pyrolysis is potentially an effective treatment of oily sludge for oil recovery, and the addition of a catalyst is expected to affect its pyrolysis behavior. In the present study, Fe/Al-pillared bentonite with various Fe/Al ratios as pyrolysis catalyst is prepared and characterized by XRD, N2 adsorption, and NH3-TPD. The integration of Al and Fe in the bentonite interlayers to form pillared clay is evidenced by increase in the basal spacing. As a result, a critical ratio of Fe/Al exists in the Fe/Al-pillared bentonite catalytic pyrolysis for oil recovery from the sludge. The oil yield increases with respect to increase in Fe/Al ratio of catalysts, then decreases with further increasing of Fe/Al ratio. The optimum oil yield using 2.0 wt% of Fe/Al 0.5-pillared bentonite as catalyst attains to 52.46% compared to 29.23% without catalyst addition in the present study. In addition, the addition of Fe/Al-pillared bentonite catalyst also improves the quality of pyrolysis-produced oil and promotes the formation of CH4. Fe/Al-pillared bentonite provides acid center in the inner surface, which is beneficial to the cracking reaction of oil molecules in pyrolysis process. The present work implies that Fe/Al-pillared bentonite as addictive holds great potential in industrial pyrolysis of oily sludge.
Rocznik
Strony
82--90
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
  • Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, China
autor
  • Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, China
autor
  • Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, China
autor
  • School of Chemical Engineering, Northwest University, China
autor
  • School of Chemistry and Chemical Engineering, Xi’an Shiyou University, China
autor
  • Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, China
Bibliografia
  • [1]. Albright, L.F., Crynes, B.L. & Corcora, W.H. (1983). Pyrolysis: Theory and Industrial Practice, Academic Press New York Ny. (https://www.osti.gov/scitech/biblio/6355324(02.06.2017)).
  • [2]. Almon, W. & Johns, W. (1977). Petroleum forming reactions: the mechanism and rate of clay catalyzed fatty acid decarboxylation, Enadimsa: Madrid, pp. 157-172.
  • [3]. Baik, O.D. & Mittal, G.S. (2002). Heat transfer coefficients during deep-fat frying of a tofu disc, Transactions of the ASAE, 45, pp. 1493-1538.
  • [4]. Beis, H., Onay, O. & Kockar, O.M. (2002). Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions, Renew Energy, 26(1), pp. 21-32.
  • [5]. Berend, I., Cases, J.M., Francois, M., Uriot, J.P. & Michot, L. (1995). Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites; 2, The Li (super+), Na (super+), K (super+), Rb (super+) and Cs (super+)-exchanged forms, Clays and Clay Minerals, 43, pp. 324-336.
  • [6]. Bridgwater, A., Meier, D. & Radlein, D. (1999). An overview of fast pyrolysis of biomass, Organic Geochemistry, 30, pp. 1479-1493.
  • [7]. Chen, K., Wang, G.H., Li, W.B., Wan, D., Hu, Q., Lu, L.L., Wei, X.B. & Cheng, Z.Z. (2015). Synthesis of magnetically modified Fe-Al pillared bentonite and heterogeneous Fenton-like degradation of Orange II, Journal of Wuhan University of Technology-Mater. Sci. Ed., 30(2), pp. 302-306.
  • [8]. Chiaramonti, D., Oasmaa, A. & Solantausta, Y. (2007). Power generation using fast pyrolysis liquids from biomass, Renewable & Sustainable Energy Reviews, 11, pp. 1056-1086.
  • [9]. Ciajolo, A. & Barbella, R. (1984). Pyrolysis and oxidation of heavy fuel oils and their fractions in a thermogravimetric apparatus, Fuel, 63, pp. 657-661.
  • [10]. Czernik, S. & Bridgwater, A. V. (2004). Overview of applications of biomass fast pyrolysis oil, Fuel, 18, pp. 590-598.
  • [11]. Da Silva, L.J., Alves, F.C. & Francfia, F.P. (2012). A review of the technological solutions for the treatment of oily sludges from petroleum refineries, Waste Management & Research, 30 (10), pp. 1-15.
  • [12]. European Commission DG Environment-B/2, Disposal and recycling routes for sewage sludge scientific and technical sub-component report, 23/10/2001.
  • [13]. Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L.C., Biak, D.R.A., Madaeni, S.S. & Abidin, Z.Z. (2009). Review of technologies for oil and gas produced water treatment, Journal of Hazardous Materials, 170, pp. 530-551.
  • [14]. Ge, Z.G., Li, D.Y. & Pinnavaia, T.J. (1994). Preparation of alumina-pillared montmorillonites with high thermal stability, regular microporosity and Lewis/Brönsted acidity, Microporous Materials, 3, pp. 165-175.
  • [15]. Kandiyoti, R., Herod, A.A. & Bartle, K.D. (2006). Solid fuels and heavy hydrocarbon liquids: Thermal characterization and analysis, Elsevier: London, ISBN: 978008044864.
  • [16]. Kök, M.V. & Karacan, O. (1998). Pyrolysis analysis and kinetics of crude oils, Journal of Thermal Analysis and Calorimetry, 52, pp. 781-788.
  • [17]. Li, C.T., Lee, W.J., Mi, H.H. & Su, C.C. (1995). PAH emission from the incineration of waste oily sludge and PE plastic mixtures, Science of the Total Environment, 170, pp. 171-183.
  • [18]. Liu, J.G., Jiang, X.M., Zhou, L.S. & Han, X.X. (2009). Pyrolysis treatment of oil sludge and model-free kinetics analysis, Journal of Hazardous Materials, 161, pp. 1208-1215.
  • [19]. Maksimova, N.I. & Krivoruchko, O.P. (1999). Study of thermocatalytic decomposition of polyethylene and polyvinyl alcohol in the presence of an unsteady-state Fe-containing catalyst, Chemical Engineering Science, 54 (20), pp. 4351-4357.
  • [20]. Mater, L., Sperb, R.M., Madureira, L., Rosin, A. & Correa, A. (2006). Proposal of a sequential treatment methodology for the safe reuse of oil sludge-contaminated soil, Journal of Hazardous Materials, 136, pp. 967-971.
  • [21]. Pánek, P. & Kostura, B. (2014). Pyrolysis of oil sludge with calcium-containing additive, Journal of Analytical & Applied Pyrolysis, 108, pp. 274-283.
  • [22]. Saha, B., Maiti, A.K. & Ghoshal, A.K. (2006). Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample, Thermochimica Acta, 444, pp. 46-52.
  • [23]. Shen, L. & Zhang, D.K. (2002). An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed, Fuel, 82, pp. 465-472.
  • [24]. Shen, L. & Zhang, D.K. (2005). Low-temperature pyrolysis of sewage sludge and putrescible garbage for fuel oil production, Fuel, 84, pp. 809-815.
  • [25]. Shie, J.L., Chang, C.Y., Lin, J.P., Wu, C.H. & Lee, D.J. (2000). Resources recovery of oil sludge by pyrolysis: kinetics study, Journal of Chemical Technology & Biotechnology, 75, pp. 443-450.
  • [26]. Shie, J.L., Chang, C.Y. & Lin, J.P. (2000). Major Products obtained from the pyrolysis of oil sludge, Energy & Fuels, 14, pp. 1176-1183
  • [27]. Shie, J.L., Lin, J.P., Chang, C.Y., Lee, D.J. & Wu, C.H. (2003). Pyrolysis of oil sludge with additives of sodium and potassium compounds, Resources Conservation & Recycling, 39, pp. 51-64.
  • [28]. Shie, J.L., Chang, C.Y., Lee, D.J. & W u, C.H. (2002). Use of inexpensive additives in pyrolysis of oil sludge, Energy & Fuels, 16, pp. 102-108.
  • [29]. Shie, J.L., Lin, J.P., Chang, C.Y., Lee, D.J. & Wu, C.H. (2002). Use of calcium compounds as additives for oil sludge pyrolysis, Journal of the Chinese Institute of Environmental Engerineering (Taiwan), 12(4), pp. 363-371.
  • [30]. Shie, J.L., Lin, J.P., Chang, C.Y., Shih, S.M., Lee, D.J. & Wu, C.H. (2004). Pyrolysis of oil sludge with additives of catalytic wastes, Journal of Analytical & Applied Pyrolysis, 71, pp. 695-707.
  • [31]. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L. & Pierotti, R.A. (1958). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure & Applied Chemistry, 57, pp. 603-619.
  • [32]. Tamer, K., Jale, Y.K., Mithat, Y. & Henning, B. (2006). Characterisation of products from pyrolysis of waste sludges, Fuel, 85, pp. 1498-1508.
  • [33]. Tyagi, B., Chudasama, C.D. & Jasra, R.V. (2006). Characterization of surface acidity of an acid montmorillonite activated with hydrothermal, ultrasonic and microwave techniques, Applied Clay Science, 31, pp. 16-28.
  • [34]. Ubani O., Atagana, H.I., Thantsha, M.S. & Rasheed, A. (2016). Identification and characterisation of oil sludge degrading bacteria isolated from compost, Archives of Environmental Protection, 42(2), pp. 67-77.
  • [35]. Wang, Z.Q., Guo, Q.J. & Liu, X. (2007). Low temperature pyrolysis characteristics of oil sludge under various heating conditions, Energy Fuels, 21, pp. 957-962.
  • [36]. Wang, Z.Q., Guo, Q.G., Liu, X.M. & Cao, C.Q. (2007). Low Temperature pyrolysis characteristics of oil sludge under various heating conditions, Energy & Fuels, 21, pp. 957-962.
  • [37]. Wei, Z.B, Michael Moldowan, J., Dahl, J., Goldstein, T.P. & Jarvie, D.M. (2006). The catalytic effects of minerals on the formation of diamondoids from kerogen macromolecules, Organic Geochemistry, 37(11), pp. 1421-1436.
  • [38]. Werle, S. (2012). Possibility of NOx emission reduction from combustion process using sewage sludge gasification gas as an additional fuel, Archives of Environmental Protection, 38(3), pp. 81-89.
  • [39]. Wiśniewski, D., Gołaszewski, J. & Białowiec, A. (2015). The pyrolysis and gasification of digestate from agricultural biogas plant, Archives of Environmental Protection, 41(3), pp. 70-75.
  • [40]. Yan, P., Lu, M., Yang, Q., Zhang, H.L., Zhang, Z.Z. & Chen, R. (2012). Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing Pseudomonas, Bioresource Technology, 116, pp. 24-28.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd76f53f-02df-44af-9532-a2d94ebf8697
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.