PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Geometric Parameters on Internal Forces in the Walls of Rectangular Tanks

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ parametrów geometrycznych na siły wewnętrzne w ścianach zbiorników prostopadłościennych
Konferencja
9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning - WMCCAU 2024 : 2-6.09.2024
Języki publikacji
EN
Abstrakty
EN
Rectangular tanks are commonly used in various industries for storing materials and products. The design of reinforced concrete liquid tanks, which must be preceded by a static analysis, is a complex issue requiring specialized knowledge and engineering experience. All types of actions, design situations, and resulting load combinations must be considered, including deformations caused by temperature gradients and the interaction of the bottom plate with the ground. Most tanks are designed and constructed with constant wall thickness, regardless of their rectangular or circular cross-section. However, tanks with variable wall thickness (e.g., trapezoidal cross-section) are rarely designed, despite their optimal fit to stress distribution. For hydrostatically loaded tanks, the load on walls increases with depth, causing the highest bending moments at the wall-bottom connection, while the value at the top, free edge is zero. Thus, structural and economic considerations favour walls with thickness increasing with depth. This article presents the results of a verification of static calculations of a monolithic rectangular tank with trapezoidal cross-section walls, comparing it with three other commonly designed tanks with different thickness and wall designs. Static calculations were performed using the finite difference method in terms of energy, employing the condition for the minimum energy of elastic strain stored in a bent plate resting on the elastic base. Traditional calculation methods were used by discretizing the object and creating systems of equations. Analysis of the results shows that constructing walls of linearly variable thickness results in a redistribution of bending moments compared to tanks with uniform wall thickness. This significantly impacts the required reinforcement area. Tanks with linearly variable wall thickness are more economical in terms of material use, aligning with the principles of sustainable construction.
Rocznik
Strony
art. no. 27
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Department of Construction and Geoengineering, Poznan University of Life Sciences, Piątkowska 94E, 60-649 Poznań, Poland
  • Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
autor
  • Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 5, 60- 965 Poznań, Poland
Bibliografia
  • 1. I. Laks, Z. Walczak and N. Walczak, “Fuzzy analytical hierarchy process methods in changing the damming level of a small hydropower plant: Case study of Rosko SHP in Poland”, Water Resour. Ind., 29, 100204 (2023). doi: 10.1016/j.wri.2023.100204.
  • 2. I. Laks and Z. Walczak, “Efficiency of Polder Modernization for Flood Protection. Case Study of Golina Polder (Poland)”, Sustainability, 12, 8056 (2020). doi: 10.3390/su12198056.
  • 3. J. Ziólko, J. “Zbiorniki, silosy”, in Poradnik projektanta konstrukcji metalowych: Tom II, edited by W. Bogucki (Arkady, Warsaw, 1983).
  • 4. J. Ziółko, Zbiorniki metalowe na ciecze i gazy [Metal tanks for liquids and gases] (Arkady, Warsaw, 1986).
  • 5. P. Horajski, L. Bohdal, L. Kukielka, R. Patyk, P. Kaldunski, and S. Legutko, “Advanced Structural and Technological Method of Reducing Distortion in Thin-Walled Welded Structures”, Materials 14, 504 (2021). doi: 10.3390/ma14030504.
  • 6. W. Buczkowski, H. Mikołajczak and A. Szymczak-Graczyk, “Przykładowa ocena rozwiązań materiałowokonstrukcyjnych zbiorników cylindrycznych z żywic poliestrowo-szklanych stosowanych w przydomowych oczyszczalniach ścieków” [Example evaluation of material and construction solutions for cylindrical tanks made of polyester-glass resins used in domestic sewage treatment plants], Gaz, Woda i Technika Sanitarna, 12, 25-28 (2005).
  • 7. A. Halicka and D. Franczak, Projektowanie zbiorników żelbetowych. Tom 1. Zbiorniki na materiały sypkie [Design of reinforced concrete tanks. Volume 1. Tanks for bulk materials (Wydawnictwo Naukowe PWN. Warsaw 2011).
  • 8. A. Halicka and D. Franczak, Projektowanie zbiorników żelbetowych. Tom 2. Zbiorniki na ciecze [Design of reinforced concrete tanks. Volume 2. Tanks for liquids] (Wydawnictwo Naukowe PWN, Warsaw 2014).
  • 9. M. Sybis and E. Konował, “Influence of Modified Starch Admixtures on Selected Physicochemical Properties of Cement Composites”, Materials, 21, 7604 (2022). doi: 10.3390/ma15217604.
  • 10. M. Sybis, E. Konował and K. Prochaska, “Dextrins as green and biodegradable modifiers of physicochemical properties of cement composites”, Energies, 11, 4115 (2022). doi: 10.3390/en15114115.
  • 11. W. Buczkowski, A. Szymczak-Graczyk and Z. Walczak, “Experimental validation of numerical static calculations for a monolithic rectangular tank with walls of trapezoidal cross-section”, Bull. Pol. Acad. Sci. Tech. Sci. 65, 799–804 (2017). doi:10.1515/bpasts-2017-0088.
  • 12. A. Szymczak-Graczyk, “Numerical Analysis of the Bottom Thickness of Closed Rectangular Tanks Used as Pontoons”. Appl. Sci., 10 (22), 8082 (2020). doi:10.3390/app10228082.
  • 13. A. Szymczak-Graczyk, “Floating platforms made of monolithic closed rectangular tanks”. Bull. Pol. Acad. Sci. Tech. Sci., 66, 209–219 (2018). doi:10.24425/122101.
  • 14. W. Buczkowski and A. Szymczak-Graczyk, “Monolityczne zbiorniki prostopadłościenne obciążone temperaturą” [Monolithic rectangular tanks loaded with temperature], Przegląd Budowlany, 9, 24-29 (2020).
  • 15. W. Buczkowski, “On reinforcement of temperature loaded rectangular slabs”. Arch. Civ. Eng., 54 (2), 315-331 (2008).
  • 16. W. Buczkowski, S. Czajka and T. Pawlak, “Analiza pracy statycznej zbiornika prostopadłościennego poddanego działaniu temperatury” [Analysis of the static work of a rectangular tank subjected to temperature], Acta Sci. Pol., Archit., 5 (2), 17-29 (2006).
  • 17. A. Szymczak-Graczyk, “Rectangular plates of a trapezoidal cross-section subjected to thermal load”, IOP Conf. Ser. Mater. Sci. Eng., 603, 032095 (2019). doi:10.1088/1757-899X/603/3/032095.
  • 18. Z. Kączkowski, Plates. Static Calculations (Arkady, Warszawa, Poland, 2000).
  • 19. L. H. Donnell, Beams, Plates and Shells (McGraw-Hill, New York, NY, USA, 1976).
  • 20. P. M. Naghdi, The Theory of Shells and Plates (Handbuch der Physick, Berlin, Germany, 1972).
  • 21. V. Panc, Theries of Elastic Plates (Academia: Prague, Czech Republic, 1975).
  • 22. S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Coatings (Arkady, Warszawa, Poland, 1962).
  • 23. R. Szlilard, Theory and Analysis of Plates. Classical and Numerical Methods (Prentice Hall, Englewood Cliffs: Bergen, NJ, USA; Prentice-Hall: Upper Saddle River, NJ, USA, 1974).
  • 24. A. C. Ugural, Stresses in Plates and Shells (McGraw-Hill: New York, NY, USA, 1981).
  • 25. M. Son, H. Sang Jung, H. Hee Yoon, D. Sung and J. Suck Kim, “Numerical Study on Scale Effect of Repetitive Plate-Loading”, Test. Appl. Sci., 9, 4442 (2019). doi:10.3390/app9204442-19.
  • 26. B. E. Rapp, “Finite Difference Method”, in Microfluidics: Modelling, Mechanics and Mathematics, Micro and Nano Technologies, edited by B. E. Rapp (Elsevier, Amsterdam, The Netherlands, 2017), pp. 623–631. doi:10.1016/B978-1-4557-3141-1.50030-7.
  • 27. J. Blazek, “Principles of Solution of the Governing Equations”, in Computational Fluid Dynamics: Principles and Applications, edited by J. Blazek (Elsevier, Amsterdam, The Netherlands, 2015), pp. 29–72. doi:10.1016/B978-0-08-099995-1.00003-8.
  • 28. M. H. Sadd, “Formulation and Solution Strategies”, in Elasticity, Theory, Applications, and Numerics, edited by M. H. Sadd (Academic Press, Elsevier, Cambridge, Massachusetts, USA, 2005), pp. 83–102. doi:10.1016/B978-012605811-6/50006-3.
  • 29. K. S. Numayr, R. H. Haddad and M. A. Haddad, “Free vibration of composite plates using the finite difference method”, Thin-Walled Struct., 42, 399–414 (2004). doi:10.1016/j.tws.2003.07.001.
  • 30. A. Szymczak-Graczyk, “Numerical analysis of the impact of thermal spray insulation solutions on floor loading”, Appl. Sci., 10(3), 1016 (2020). doi: 10.3390/app10031016.
  • 31. W. Buczkowski and A. Szymczak-Graczyk “Wpływ różnej grubości i konstrukcji ścian na pracę statyczną monolitycznych zbiorników prostopadłościennych” [The effect of different wall thicknesses and structures on the static work of monolithic rectangular tanks], Acta Sci. Pol., Archit., 7(3) (2008), pp. 23-34.
  • 32. A. Dębicka, K. Olejniczak, B. Radomski, D. Kurz and D. Poddubiecki, “Renewable Energy Investments in Poland: Goals, Socio-Economic Benefits, and Development Directions”, Energies 17, 2374 (2024). doi: org/10.3390/en17102374.
  • 33. N. Staszak, T. Garbowski and A. Szymczak-Graczyk, “Solid Truss to Shell Numerical Homogenization of Prefabricated Composite Slabs”, Materials 14, 4120 (2021). doi: 10.3390/ma14154120.
  • 34. N. Staszak, A. Szymczak-Graczyk and T. Garbowski, “Elastic Analysis of Three-Layer Concrete Slab Based on Numerical Homogenization with an Analytical Shear Correction Factor”, Appl. Sci., 12, 9918 (2022). doi: 10.3390/app12199918.
  • 35. N. Staszak, T. Garbowski and B. Ksit, “Optimal Design of Bubble Deck Concrete Slabs: Sensitivity Analysis and Numerical Homogenization”, Materials, 16, 2320 (2023). doi: 10.3390/ma16062320.
  • 36. N. Staszak, T. Garbowski and B. Ksit, “Application of the generalized nonlinear constitutive law in numerical analysis of hollow-core slabs”, Arch. Civ. Eng., 68 (2) (2022), pp. 125-145. doi: 10.24425/ace.2022.140633.
  • 37. L. Chen, J. M. Rotter and C. Doerich, “Buckling of cylindrical shells with stepwise variable wall thickness under uniform external pressure”, Eng. Struct., 33 (12) (2011), pp. 3570-3578. doi: 10.1016/j.engstruct.2011.07.021.
  • 38. A. S. Fahmy and A. M. Khalil, “Wall thickness variation effect on tank’s shape behaviour under critical harmonic settlement”, Alex. Eng. J., 55 (4) (2016), pp. 3205-3209. doi: 10.1016/j.aej.2016.07.035.
  • 39. P. M. Lewiński and M. Rak, “Soil-structure interaction of cylindrical tank of variable wall thickness under the constant thermal loading” Arch. Civ. Eng., 66(4) (2020), pp. 269-285. doi: 10.24425/ace.2020.135221.
  • 40. P. M. Lewinski and M. Rak “Soil – Structure Interaction of Cylindrical Tank of Variable Wall Thickness under the Thermal Gradient Conditions”, IOP Conf. Ser. Mater. Sci. Eng., 661, 012044 (2019). doi:10.1088/1757-899X/661/1/012044.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd738685-628d-4e81-bfb2-73a8a0aec44a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.