PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monotonic behaviour of typical Al-Cu-Mg alloy pre-strained at elevated temperature

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents results of monotonic tensile and creep tests conducted on typical Al-Cu-Mg alloy (commercial 2024) specimens. Tensile tests carried out at room (20°C) and elevated (100°C, 200°C, 300°C) temperatures made it possible to determine strength properties of the material (Young’s modulus, yield stress, ultimate tensile strength). Creep tests were performed at elevated temperature (100°C, 200°C and 300°C) with a constant force. In order to obtain material creep characteristics, creep-rupture tests were carried out. Then creep tests were conducted with two different strain values: one corresponding to the beginning of the secondary creep and the other corresponding to a certain value of the tertiary creep. After preliminary creep deformation at two various strain levels, specimens were cooled at ambient temperature and then subjected to monotonic tensile tests. The characteristics of the material were obtained for pre-strained specimens at different temperatures. Specimens fracture surfaces obtained as a result of tensile (at elevated and room temperature), creep and combined tests were analyzed.
Rocznik
Strony
1055--1068
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Białystok, Poland
autor
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Białystok, Poland
autor
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Białystok, Poland
Bibliografia
  • 1. Chakherlou T.N., Aghdam A.B., Akbari A., Saeedi K., 2010, Analysis of cold expanded fastener holes subjected to short time creep: Finite element modelling and fatigue tests, Materials and Design, 31, 2858-2866
  • 2. Chen J.F., Zhen L., Jiang J.T., Yang L., Shao W.Z., Zhang B.Y., 2012, Microstructures and mechanical properties of age-formed 7050 aluminum alloy, Materials Science and Engineering: A, 539, 115-123
  • 3. Derpenski L., Seweryn A., 2011, Experimental research into fracture of EN-AW 2024 and EN-AW 2007 aluminum alloy specimens with notches subjected to tension, Experimental Mechanics, 51, 1075-1094
  • 4. EN ISO 204, 2009, Metallic materials, uniaxial creep testing in tension: Method of test
  • 5. EN ISO 6892-1, 2016, Metallic materials, tensile testing -Part 1: Method of test at room temperature
  • 6. EN ISO 6892-2, 2011, Metallic materials, tensile testing -Part 2: Method of test at elevated temperaturę
  • 7. Guo W., Yang M., Zheng Y., Zhang X., Li H., Wen X., Zhang J., 2013, Influence of elastic tensile stress on aging process in an Al-Zn-Mg-Cu alloy, Materials Letters, 106, 14-17
  • 8. Haigen W., Fuzhong X., Mingpu W., 2017, Effect of ingot grain refinement on the tensile properties of 2024 Al alloy sheets, Materials Science and Engineering: A, 682, 1-11
  • 9. Ho K.C., Lin J., Dean T.A., 2004, Constitutive modelling of primary creep for age forming an aluminium alloy, Journal of Materials Processing Technology, 153-154, 122-127
  • 10. Karakas¸ O., Szusta J., 2016, Monotonic and low cycle fatigue behaviour of 2024-T3 aluminium alloy between room temperature and 300◦C for designing VAWT components, Fatigue and Fracture of Engineering Materials and Structure, 39, 95-109
  • 11. Kowalewski Z.L., Szymczak T., Maciejewski J., 2014, Material effects during monotonic- -cyclic loading, International Journal of Solids and Structures, 51, 740-753
  • 12. Kumar P., LeBlanc J., Shukla A., 2011, Effect of curvature on shock loading response of aluminum panels, [In:] Dynamic Behavior of Materials, Proulx T. (Ed.), Vol. 1, Springer, 369-374
  • 13. Li C., Wan M., Wu X.-D., Huang L., 2010, Constitutive equations in creep of 7B04 aluminum alloys, Materials Science and Engineering: A, 527, 3623-3629
  • 14. Li L.-T., Lin Y.C., Zhou H.-M., Jiang Y.-Q., 2013, Modeling the high temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model, Computational Materials Science, 73, 72-78
  • 15. Lin Y.C., Jiang Y.-Q., Xia Y.-C., Zhang X.-C., Zhou H.-M., Deng J., 2014, Effects of creep-aging processing on the corrosion resistance and mechanical properties of an Al-Cu-Mg alloy, Materials Science and Engineering: A, 605, 192-202
  • 16. Lin Y.C., Xia Y.-C., Chen M.-S., Jiang Y.-Q., Li L.T., 2013a, Modeling the creep behavior of 2024-T3 Al alloy, Computational Materials Science, 67, 243-248
  • 17. Lin Y.C., Xia Y.-C., Jiang Y.-Q., Zhou H.-M., Li L.-T., 2013b, Precipitation hardening of 2024-T3 aluminum alloy during creep aging, Materials Science and Engineering: A, 565, 420-429
  • 18. Lumley R.N., Morton A.J., Polmear I.J., 2002, Enhanced creep performance in an Al-Cu-Mg-Ag alloy through underageing, Acta Materialia, 50, 3597-3608
  • 19. Naimi A., Yousfi H., Trari M., 2013, Influence of cold rolling degree and ageing treatments on the precipitation hardening of 2024 and 7075 alloys, Mechanics of Time-Dependent Materials, 17, 285-296
  • 20. Ro Y.J., Begley M.R., Gangloff R.P., Agnew S.R., 2006, Effect of aging on scale-dependent plasticity in aluminum alloy 2024, Materials Science and Engineering: A, 435-436, 333-342
  • 21. Singh A.K., Ghosh S., Mula S., 2016, Simultaneous improvement of strength, ductility and corrosion resistance of Al2024 alloy processed by cryoforging followed by ageing, Materials Science and Engineering: A, 651, 774-785
  • 22. Szusta J., Seweryn A., 2017, Experimental study of the low-cycle fatigue life under multiaxial loading of aluminum alloy EN AW-2024-T3 at elevated temperatures, International Journal of Fatigue, 96, 28-42
  • 23. Tomczyk A., Koniuszewski R., 2017, Construction of a System for Measuring Sample Elongations at Elevated Temperatures Using Devices Intended for Work at Room Temperature (in Polish), Patent No. PL 68955 Y1
  • 24. Wang H., Yi Y., Huang S., 2016, Influence of pre-deformation and subsequent ageing on the hardening behavior and microstructure of 2219 aluminum alloy forgings, Journal of Alloys and Compounds, 685, 941-948
  • 25. Wang Y.G., Jiang Z.G., Wang L.L., 2013, Dynamic tensile fracture behaviours of selected aluminum alloys under various loading conditions, Strain, 49, 335-347
  • 26. Yang Y., Zhan L., Ma Q., Feng J., Li X., 2016, Effect of pre-deformation on creep age forming of AA2219 plate: Springback, microstructures and mechanical properties, Journal of Materials Processing Technology, 229, 697-702
  • 27. Yang Y., Zhan L., Shena R., Yin X., Li X., Li W., Huang M., He D., 2017, Effect of pre- -deformation on creep age forming of 2219 aluminum alloy: Experimental and constitutive modelling, Materials Science and Engineering: A, 683, 227-235
  • 28. Zhan L., Lin J., Dean T.A., Huang M., 2011, Experimental studies and constitutive modelling of the hardening of aluminium alloy 7055 under creep age forming conditions, International Journal of Mechanical Sciences, 53, 595-605
  • 29. Zhang J., Deng Y., Zhang X., 2013, Constitutive modeling for creep age forming of heat- -treatable strengthening aluminum alloys containing plate or rod shaped precipitates, Materials Science and Engineering: A, 563, 8-15
  • 30. Zhao Y.L., Yang Z.Q., Zhang Z., Su G.Y., Ma X.L., 2013, Double-peak age strengthening of cold-worked 2024 aluminum alloy, Acta Materialia, 61, 1624-1638
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd724a86-2d74-40a0-b13a-4b9a2632bf30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.