PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Asymptotic analysis for coupled parabolic problem with Dirichlet-Fourier boundary conditions in a thin domain

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper concerns the asymptotic behaviour of the initial boundary value problem of a class of reaction-diffusion systems (coupled parabolic systems) posed in a thin domain with Dirichlet-Fourier boundary conditions. We first prove the existence and uniqueness of the solution to the problem for fixed ε >0 by the Galerkin method. Then, we give the characterization of the limiting behaviour of these solution as the thinness tends to zero.
Rocznik
Tom
Strony
163--185
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Department of Mathematics, Faculty of Science, University of Saad Dahlab, Blida 1, Algeria
  • Laboratory for Pure and Applied Mathematics, University of M′sila, Bp166 M’sila 28000, Algeria
Bibliografia
  • [1] J. M. Arrieta, A. N. Carvalho, M.C. Pereira, R.P. Silva, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Analysis: Theory, Methods & Applications 74 (15) (2011) 5111-5132.
  • [2] M. Boukrouche, G. Lukaszewicz, On a lubrication problem with Fourier and Tresca boundary conditions, Math. Models Methods Appl. Sci. 14 (2004) 913-941. doi:10.1142/S0218202504003490.
  • [3] G. A. Chechkin, A. Friedman, A. L. Piatnitski, The boundary-value problem in domains with very rapidly oscillating boundary, J. Math. Analysis and Appl. 231 (1999) 213-234.
  • [4] P. G. Ciarlet, Plates and Junctions in Elastic Multi-Structures, Asymptotic Analysis, Masson-Springer-Verlag, Berlin, 1990.
  • [5] M. Dilmi, M. Dilmi, H. Benseridi, Asymptotic behavior for the elasticity system with a nonlinear dissipative term, Rend. Istit. Mat. Univ. Trieste 51 (2019) 41-60.
  • [6] M. Dilmi, M. Dilmi, H. Benseridi, A 3D-2D asymptotic analysis of viscoelastic problem with nonlinear dissipative and source terms, Math. Meth. Appl. Sci. 42 (2019). https://doi.org/10.1002/mma.5755.
  • [7] M. Dilmi, M. Dilmi, H. Benseridi, Study of generalized Stokes operator in a thin domain with friction law (case p≺2), Mathematical Methods in the Applied Sciences 41 (2018) 9027-9036.
  • [8] M. Dilmi, M. Dilmi, H. Benseridi, Asymptotic analysis of quasistatic electroviscoelastic problem with Tresca’s friction Law , Computational and Mathematical Methods 1 (2019) e1028.
  • [9] E. E. Holmes, M.A. Lewis, J.E. Banks, R.R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics, Ecology 75 (1994) 17-29.
  • [10] A. V. Klevtsovskiy, T. A. Mel’nyk, Asymptotic expansion for the solution to a boundary-value problem in a thin cascade domain with a local joint, Asymptotic Analysis 97 (2016) 265-290.
  • [11] T. Lewinsky, J. Telega, Plates, Laminates and Shells: Asymptotic Analysis and Homogenization, World Scientific, 2000.
  • [12] D. Li, K. Lu, B. Wang, X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete & Continuous Dynamical Systems 38 (2018) 187.
  • [13] J. L. Lions, Quelques Méthodes De R ́esolution Des Problèmes Aux Limites Non Linéaires, Paris, Dunod, 1969.
  • [14] Y. Luchko, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation, Computers & Mathematics with Applications 59 (2010) 1766-1772.
  • [15] J. C. Nakasato, M. C. Pereira, A classical approach for the p-Laplacian in oscillating thin domains, Topological Methods in Nonlinear Analysis 58 (2021) 209-231.
  • [16] Y. Orlov, D. Dochain, Discontinuous feedback stabilization of minimum-phase semilinear infinite-dimensional systems with application to chemical tubular reactor, IEEE Trans. Autom. Control. 47 (2002) 1293-1304.
  • [17] G. Raugel, Dynamics of partial differential equations on thin domains, In Dynamical systems, Springer, Berlin, Heidelberg (1995) 208-315.
  • [18] R. Xu, W. Lian, Y. Niu, Global well-posedness of coupled parabolic systems, Science China Mathematics 63 (2020) 321-356.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd6bb955-2311-4fa5-9de9-ac328b60faed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.