PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geological and Mineralogical Analysis of Phosphorites in the Jebel Dhyr Syncline, Eastern Algerian Atlas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The characterization of phosphorite features within specific North African sedimentary series remains incomplete. Hence, the primary aim of this research is to determine the composition of powder patterns and phosphatic allochem fragments within the Jebel Dhyr syncline, situated in northeastern Algeria. By focusing on this region, the study endeavors to investigate the mineralogical properties and geochemical aspects of Paleocene-Eocene phosphorites in the broader context of North Africa. The methodology employed encompasses geological, petrographic, geochemical, and mineralogical analyses of the rocks. To achieve this objective, we have employed various techniques including thin section analysis, atomic absorption spectrometry, and X-ray diffraction (XRD). The geological section across the Jebel Dhyr area has revealed a succession of horizontally layered rocks. These rocks consist of eight prominent phosphorite layers interspersed with carbonate formations. Additionally, occasional thin layers of flint can be observed within these carbonate layers. XRD analysis of the whole rock established the presence of apatite group minerals such as hydroxylapatite, fluroapatite, francolite, and dahllite. Other minerals identified include carbonates, quartz, zeolites, feldspar, clays, sulphides, and gypsum. XRD recordings on the phosphatic allochem grains (pellets, coprolites, intraclasts, and shark teeth) identified different mineral phases, with coprolites and pellets showing hydroxylapatite and fluorapatite, sometimes associated with dahllite, while granules of different forms revealed hydroxylapatite associated with fluorapatite or francolite. Teeth from the Jebel Dhyr phosphate beam showed the systematic presence of fluorapatite. This study provides valuable information for the comprehensive utilization of phosphorus resources in the Algeria-Tunisia border.
Słowa kluczowe
Czasopismo
Rocznik
Strony
89--104
Opis fizyczny
Bibliogr. [64] poz., rys., tab., wykr.
Twórcy
  • Department of Earth Sciences and the Universe, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Larbi Tebessi University, Tebessa, 12000, Algeria
  • Laboratory of sedimentary Environment and hydric and minerals resources, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Larbi Tebessi University, Tebessa, 12000, Algeria
autor
  • Department of Earth Sciences, Institute of Architecture and Earth Sciences, Farhat Abbas University, Setif, 19000, Algeria
  • Laboratory of Applied Research in Engineering Geology, Geotechnics, Water Sciences, and Environment, Farhat Abbas University, Setif, 19000, Algeria
  • International Association of Water Resources in the Southern Mediterranean Basin, Tunisia
  • Department of Earth Sciences, Faculty of Science, University of Tunis, Tunisia
autor
  • Department of Earth Sciences, Faculty of Sciences of Gafsa, university of Gafsa, Tunisia
  • International Association of Water Resources in the Southern Mediterranean Basin, Tunisia
autor
  • International Association of Water Resources in the Southern Mediterranean Basin, Tunisia
  • International Association of Water Resources in the Southern Mediterranean Basin, Tunisia
Bibliografia
  • Abed, A. M., & Al-Agha, M. R. (1989). Petrography, geochemistry and origin of the NW Jordan phosphorites. Journal of the Geological Society, 146(3), 499-506. https://doi.org/10.1144/gsjgs.146.3.0499
  • Abed, A. M., Arouri, K. R., & Boreham, C. J. (2005). Source rock potential of the phosphorite–bituminous chalk– marl sequence in Jordan. Marine and Petroleum Geology, 22(3), 413-425. https://doi.org/10.1016/j. marpetgeo.2005.01.004
  • Abou El Anwar, E., & Abd El Rahim, S. (2022). Mineralogy, geochemistry and origin of the phosphorites at Um El Huwtat mine, Quseir, Central Eastern Desert. Egypt Carbonates and Evaporites 37:16. https://doi. org/10.1007/s13146-022-00759-4
  • Anis, Z., Wissem, G., Riheb, H., Biswajeet, P., & Essghaier, G. M. (2019). Effects of clay properties in the landslides genesis in flysch massif: Case study of Aïn Draham, North Western Tunisia. Journal of African Earth Sciences, 151, 146-152. https://doi.org/10.1016/j. jafrearsci.2018.12.005
  • ASTM International. (2017). Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis (ASTM D6913-17). ASTM International.
  • Bagwan, W. A., Gavali, R. S., & Maity, A. (2023). Quantifying soil organic carbon (SOC) density and stock in the Urmodi River watershed of Maharashtra, India: implications for sustainable land management. Journal of Umm Al-Qura University for Applied Sciences, 9, 548-564. https://doi.org/10.1007/s43994-023-00064-3
  • Baioumy, H. M. (2007). Iron–phosphorus relationship in the iron and phosphorite ores of Egypt. Geochemistry, 67(3), 229-239. https://doi.org/10.1016/j. chemer.2004.10.002
  • Barra, P. J., Pontigo, S., Delgado, M., Parra–Almuna, L., Duran, P., Valentine, A. J., Jorquera, M. A., & Mora, M. de la L. (2019). Phosphobacteria inoculation enhances the benefit of P–fertilization on Lolium perenne in soils contrasting in P–availability. Soil Biology and Biochemistry, 136, 107516. https://doi.org/10.1016/j. soilbio.2019.06.012
  • Béji Sassi, A. (1984). Petrology, Mineralogy, and Geochemistry of Phosphatic Sediments from the Eastern Edge of Kasserine Island (Tunisia). Doctoral Thesis, 3rd Cycle, University of El Manar.
  • Ben Hassen, A., Trichet, J., Disnar, J. R., & Belayouni, Y. (2011). Pétrographie et géochimie comparées des pellets phosphatés et de leur gangue dans le gisement phosphaté de Ras-Draa (Tunisie). Implications sur la genèse des pellets phosphatés. Swiss Journal of Geosciences, 103, 457-473. doi: 10.1007/s00015-010- 0029-x
  • Benmarce, K., Hadji, R., Zahri, F., Khanchoul, K., Chouabi, A., Zighmi, K., & Hamed, Y. (2021). Hydrochemical and geothermometry characterization for a geothermal system in semiarid dry climate: The case study of Hamma spring (Northeast Algeria). Journal of African Earth Sciences, 182, 104-285. https://doi. org/10.1016/j.jafrearsci.2021.104285
  • Besser, H., Dhaouadi, L., Hadji, R., Hamed, Y., & Jemmali, H. (2021). Ecologic and economic perspectives for sustainable irrigated agriculture under arid climate conditions: An analysis based on environmental indicators for southern Tunisia. Journal of African Earth Sciences, 177, 104-134. https://doi.org/10.1016/j. jafrearsci.2021.104134
  • Bles, JL. & Fleury, J. (1970). Notice explicative de la carte géologique du Morsot (178). Service géologique de l’Algérie Alger, 1-36.
  • Boubazine, L., Boumazbeur, A., Hadji, R., & Fares, K. (2022). Slope failure characterization: A joint multigeophysical and geotechnical analysis, case study of Babor Mountains range, NE Algeria. Mining of Mineral Deposits, 16(4), 65-70. https://doi.org/10.33271/ mining16.04.065
  • Boulemia, S., Hadji, R., & Hamimed, M. (2021). Depositional environment of phosphorites in a semiarid climate region, case of El Kouif area (Algerian–Tunisian border). Carbonates and Evaporites, 36(3), 1-15. https://doi. org/10.1007/s13146-021-00719-4
  • Boulemia, S., Hamimed, M., Bouhlel, S., & Bejaoui, J. (2015). Petro-Mineralogical Analysis of Sedimentary Phosphate of Marine Origin, Case of the Locality of El Kouif (Algerian-Tunisian Confines). Open Journal of Geology, 5, 156-173. http://dx.doi.org/10.4236/ ojg.2015.53015
  • Brahmi, S., Baali, F., Hadji, R., Brahmi, S., Hamad, A., Rahal, O., ... & Hamed, Y. (2021). Assessment of groundwater and soil pollution by leachate using electrical resistivity and induced polarization imaging survey, case of Tebessa municipal landfill, NE Algeria. Arabian Journal of Geosciences, 14(4), 1-13. https://doi.org/10.1007/ s12517-021-06571-z
  • Buccione, R., Kechiched, R., Mongelli, G., & Sinisi, R. (2021). REEs in the North Africa P-Bearing Deposits, Paleoenvironments, and Economic Perspectives: A Review. Minerals, 11(214), 1-27. https://doi. org/10.3390/min11020214
  • Chaabani, F. (1978). Phosphates of the Type Section of Foum Selja (Métlaoui, Tunisia): A Sequential Sedimentary Series with Paleogene Evaporites. Doctoral dissertation, University of Louis Pasteur, Strasbourg.
  • Chabou-Mostefaoui, S. (1987). Étude de la série phosphatée tertiaire du Jebel Onk, Algérie, Stratigraphie, Pétrographie, Minéralogie et Analyse Statistique [Unpublished doctoral dissertation, University of AixMarseille III, France].
  • Crosby, C. H., & Bailey, J. V. (2012). The role of microbes in the formation of modern and ancient phosphate mineral deposits. Frontiers in Microbiology, 3:241. doi: 10.3389/fmicb.2012.00241
  • Dahoua, L., Usychenko, O., Savenko, V. Y., & Hadji, R. (2018). Mathematical approach for estimating the stability of geotextile-reinforced embankments during an earthquake. Mining Science, 25, 207-217. doi: 10.5277/msc182501
  • Dar Shamim A., Khan K. F, & Birch W. D. (2017). Sedimentary: Phosphates, Reference Module in Earth Systems and Environmental Sciences, Elsevier, 24, 1-17 doi: 10.1016/B978-0-12-409548-9.10509-3
  • Dar, S. A., Khan, K. F., Khan, S. A., Khan, S., & Alam, M. M. (2015). Petro-mineralogical studies of the Paleoproterozoic phosphorites in the Sonrai basin, Lalitpur District, Uttar Pradesh, India. Natural Resources Research, 24(3), 339-348. doi: 10.1007/s11053-014-9260-x
  • El Bamiki, R., Raji, O., Ouabid, M., Elghali, A., Khadiri Yazami,O., & Bodinier, J.-L. (2021). Phosphate Rocks: A Review of Sedimentary and Igneous Occurrences in Morocco. Minerals, 11, 1-23. https://doi.org/10.3390/ min11101137
  • El Haddi, H. (2014). Silicifications of the Phosphate Series of Ouled Abdoun (Maastrichtian-Lutetian, Morocco): Sedimentology, Mineralogy, Geochemistry, and Genetic Context. Doctoral Thesis, Hassan II University of Casablanca, 135p.
  • Ferhaoui, S., Kechiched, R., Bruguier, O., Sinisi, R., Kocsis, L., Mongelli, G., Bosch, D., Ameur-Zaimeche, O., & Laouar, R. (2022). Rare earth elements plus yttrium (REY) in phosphorites from the Tébessa region (Eastern Algeria): Abundance, geochemical distribution through grain size fractions, and economic significance. Journal of Geochemical Exploration, 241, 107058.
  • Flandrin, J. (1948). Contribution à l’étude stratigraphique du Nummulitique algérien. Bulletin du Service de la Carte géologique de l’Algérie, 19, 1-340.
  • Fleet, M.E. & Liu, X. (2005) Local structure of channel ions in carbonate apatite. Biomaterials, 26, 7548–7554. https://doi.org/10.1016/j.biomaterials.2005.05.025
  • Fleury, J. (1969). Stratigraphie du Crétacé et de l’Eocène (Aptien à Lutétien) de la feuille 1:50000 morsot, no 178. Publications du Service de la Carte géologique de l'Algérie, Nouvelle série Bulletin, 39, 145-157.
  • Fredj, M., Hafsaoui, A., Riheb, H., Boukarm, R., & Saadoun, A. (2020). Back-analysis study on slope instability in an open pit mine (Algeria). Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 24-29.
  • Gadri, L., Hadji, R., Zahri, F., Benghazi, Z., Boumezbeur, A., Laid, B. M., & Raïs, K. (2015). The quarries edges stability in opencast mines: a case study of the Jebel Onk phosphate mine, NE Algeria. Arabian Journal of Geosciences, 8(11), 8987-8997.
  • Gál, P., Polgári, M., Józsa, S., Gyollai, I., Kovács, I., Szabó, M., & Fintor, K. (2020). Contribution to the origin of Mn-U-Be-REE-enrichment in phosphorite, near Bükkszentkereszt, NE Hungary. Ore Geology Reviews, 125, 103665. https://doi.org/10.1016/j. oregeorev.2020.103665
  • Garnit, H., Bouhlel, S., & Jarvis, I. (2017). Geochemistry and depositional environments of Paleocene-Eocene phosphorites: Metlaoui Group, Tunisia. Journal of African Earth Sciences, 134, 704-736. https://doi. org/10.1016/j.jafrearsci.2017.07.021
  • Hamad, A., Abdeslam, I., Fehdi, C., Badreddine, S., Mokadem, N., Legrioui, R., & Hamed, Y. (2022). Vulnerability characterization for multi-carbonate aquifer systems in semiarid climate, case of Algerian– Tunisian transboundary basin. International Journal of Energy and Water Resources, 6(1), 67-80. https://doi. org/10.1007/s42108-021-00142-4
  • Hamad, A., Hadji, R., Bâali, F., Houda, B., Redhaounia, B., Zighmi, K., & Hamed, Y. (2018). Conceptual model for karstic aquifers by combined analysis of GIS, chemical, thermal, and isotopic tools in TunisoAlgerian transboundary basin. Arabian Journal of Geosciences, 11(15), 1-16. https://doi.org/10.1007/ s12517-018-3773-2
  • Hamed, Y., Hadji, R., Redhaounia, B., Zighmi, K., Bâali, F., & El Gayar, A. (2018). Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. Euro-Mediterranean Journal for Environmental Integration, 3(1), 25. https:// doi.org/10.1007/s41207-018-0067-8
  • Hamed, Y., Hadji, R., Ncibi, K., Hamad, A., Ben Saad, A., Melki, A., ... & Mustafa, E. (2022a). Modelling of potential groundwater artificial recharge in the transboundary Algero‐Tunisian Basin (Tebessa‐Gafsa): The application of stable isotopes and hydroinformatics tools. Irrigation and Drainage, 71(1), 137-156.
  • Hamed, Y., Khelifi, F., Houda, B., Sâad, A. B., Ncibi, K., Hadji, R., ... & Hamad, A. (2022b). Phosphate mining pollution in southern Tunisia: environmental, epidemiological, and socioeconomic investigation. Environment, Development and Sustainability, 25, 13619-13636. https://doi.org/10.1007/s10668-022-02606-x
  • Hamed, Y., Redhaounia, B., Ben Sâad, A., Hadji, R., & Zahri, F. (2017). Groundwater inrush caused by the fault reactivation and the climate impact in the mining Gafsa basin (southwestern Tunisia). Journal of Tethys, 5(2), 154-164.
  • Jaballi, F., Felhi, M., Khelifi, M., Fattah, N., Zayani, K., Abbes, N., Elouadi, B., & Tlili, A. (2019). Mineralogical and geochemical behavior of heated natural carbonateapatite of the Ypresian series, Maknassy-Mezzouna basin, central Tunisia. Carbonates and Evaporites, 34, 1689–1702. https://doi.org/10.1007/s13146-019- 00519-x
  • Jarvis, I., Burnett, W. C., Nathan, Y., Almbaydin, F. S. M., Attia, A. K. M,, Castro, L. N. , Flicoteaux, R., Hilmy, M. E., Husain V., Qutawnah, A. A., Serjani, A., & Zanin, Y. N. (1994). Phosphorite geochemistry state of the-art and environmental concerns. Eclogae Geologicae Helvetiae, 87, 643-700.
  • Kallel, A., Ksibi, M., Dhia, H. B., & Khélifi, N. (2017). Recent Advances in Environmental Science from the EuroMediterranean and Surrounding Regions Proceedings of Euro-Mediterranean Conference for Environmental Integration (EMCEI-1), Tunisia 2017. In Conference proceedings EMCEI (p. 167).
  • Kechiched, R., Laouar, R., Bruguier, O., Kocsis, L., Salmi-Laouar, S., Bosch, D., Ameur-Zaimeche, O., Foufou, A., & Larit, H. (2020). Comprehensive REE + Y and sensitive redox trace elements of Algerian phosphorites (Tébessa, eastern Algeria): A geochemical study and depositional environments tracking. Journal of Geochemical Exploration, 208, 106396.
  • Kerbati, N. R., Gadri, L., Hadji, R., Hamad, A., & Boukelloul, M. L. (2020). Graphical and numerical methods for stability analysis in surrounding rock of underground excavations, example of Boukhadra Iron Mine NE Algeria. Geotechnical and Geological Engineering, 38(3), 2725-2733.
  • McConnell, D. (1973). Apatite: its crystal chemistry, mineralogy utilization and geologic and biologic occurrences. In: Applied Mineralogy, vol 5. Vienna, New York: Springer.
  • Ncibi, K., Hadji, R., Hajji, S., Besser, H., Hajlaoui, H., Hamad, A., Mokadem, N., Ben Saad, A., Hamdi, M., & Hamed, Y. (2021). Spatial variation of groundwater vulnerability to nitrate pollution under excessive fertilization using index overlay method in central Tunisia (Sidi Bouzid basin). Irrigation and Drainage, 70(5), 1209-1226. https://doi.org/10.1002/ird.2599
  • Nekkoub, A., Baali, F., Hadji, R., & Hamed, Y. (2020). The EPIK multi-attribute method for intrinsic vulnerability assessment of karstic aquifer under semi-arid climatic conditions, case of Cheria Plateau, NE Algeria. Arabian Journal of Geosciences, 13(15), 1-15.
  • Notholt, A. J. G., Sheldon, R. P., & Davidson, D. F. (2005). Phosphate Deposits of the World: Volume 2, Phosphate Rock Resources. Cambridge University Press.
  • Orabi, O. H., El-Sabbagh, A., Mansour, A. S., Ismail, H., & Taha, S. (2023). Foraminifera study for the characterization of the Campanian/Maastrichtian boundary in Gebel Owaina, Nile Valley, Egypt. Journal of Umm Al-Qura University Applied Sciences, 9, 341–359. https://doi. org/10.1007/s43994-023-00043-8
  • Rais, K., Kara, M., Gadri, L., Hadji, R., & Khochmen, L. (2017). Original approach for the drilling process optimization in open cast mines: Case study of Kef Essenoun open pit mine Northeast of Algeria. Mining Science, 24, 147-159. https://doi.org/10.5277/msc172409
  • Sankar, T. K., Ambade, B., Mahato, D. K., Kumar, A., & Jangde, R. (2023). Anthropogenic fine aerosol and black carbon distribution over urban environment. Journal of Umm Al-Qura University Applied Sciences, 9, 471–480. https://doi.org/10.1007/s43994-023-00055-4
  • Sassi S., (1974). La sédimentation phosphatée au Paléocène dans le Sud et le Centre Ouest de la Tunisie. Thèse Doct. ès-Sci. Univ. Paris-Sud Orsay. France.
  • Sengul, H., Kadir Ozer, A., & Sahin Gulaboglu, M. (2006). Beneficiation of Mardin-Mazıdaği (Turkey) calcareous phosphate rock using dilute acetic acid solutions. Chemical Engineering Journal, 122(3), 135-140. https://doi.org/10.1016/j.cej.2006.06.005
  • Stowasser, W. (1975). Phosphate rocks. In: U.S. Bureau of Mines, Bulletin 667.
  • Taib, H., Hadji, R., Hamed, Y., & et al. (2023). Exploring neotectonic activity in a semiarid basin: A case study of the Ain Zerga watershed. Journal of Umm AlQura University Applied Sciences. Advance online publication. https://doi.org/10.1007/s43994-023- 00072-3
  • Tamani, F., Hadji, R., Hamad, A., & Hamed, Y. (2019). Integrating remotely sensed and GIS data for the detailed geological mapping in semi-arid regions: case of Youks les Bains Area, Tebessa Province, NE Algeria. Geotechnical and Geological Engineering, 37(4), 2903-2913.
  • Warr, L. N. (2021) IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291-320. https://doi. org/10.1180/mgm.2021.43
  • Yi, H., Balan, E., Gervais, C., Segalen, L., Fayon, F., Roche, D., Person, A., Morin, G., Guillaumet, M., Blanchard, M., Lazzeri, M., & Babonneau, F. (2013). A carbonatefluoride defect model for carbonate-rich fluorapatite. American Mineralogist, 98, 1066-1069.
  • Zeqiri, R. R., Riheb, H., Karim, Z., Younes, G., Rania, B., & Aniss, M. (2019). Analysis of safety factor of security plates in the mine "Trepça" Stantërg. Mining Science, 26, 21-36. https://doi.org/10.37190/msc192602
  • Zerzour, O., Gadri, L., Hadji, R., Mebrouk, F., & Hamed, Y. (2020). Semi-variograms and kriging techniques in iron ore reserve categorization: application at Jebel Wenza deposit. Arabian Journal of Geosciences, 13, 820. https://doi.org/10.1007/s12517-020-05858-x
  • Zerzour, O., Gadri, L., Hadji, R., Mebrouk, F., & Hamed, Y. (2021). Geostatistics-Based Method for Irregular Mineral Resource Estimation, in Ouenza Iron Mine, Northeastern Algeria. Geotechnical and Geological Engineering, 39, 3337-3346. https://doi.org/10.1007/ s10706-021-01695-1
  • Zhang, Y., Li, Z., Dini, S. M., Qin, M., Banakhar, A. S., Li, Z., Yi, L., Memesh, A. M., Shammari, A. M., & Li, G. (2021). Origin and Evolution of the Late Cretaceous Reworked Phosphorite in the Sirhan-Turayf Basin, Northern Saudi Arabia. Minerals, 11(4), 350. https://doi.org/10.3390/ min11040350
  • Zhang, Y., Xie, D., Ni, J., & Zeng, X. (2019). Optimizing phosphate fertilizer application to reduce nutrient loss in a mustard (Brassica juncea var. tumida)-maize (Zea mays L.) rotation system in Three Gorges Reservoir area. Soil and Tillage Research, 190, 78-85. https://doi. org/10.1016/j.still.2019.03.001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd6af2c0-92bf-4a85-b0fb-0b8c3897161b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.