PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Laser interference patterning of diamond-like carbon layers for directed migration and growth of smooth muscle cell depositions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seeding of cells on functional, biocompatible scaffolds is a crucial step in achieving the desired engineered tissue. The authors show the constructional solutions of the Nd:YAG pulse laser system with the Q-switch modulation for direct and interferential shaping of the surface of biocompatible materials. The two-channel interference system is distinguished by high control, simplicity and repetitiveness regarding laser energy level and dimensions of the surface structures. The experiments were conducted on hard, biocompatible substrates of amorphous carbon (diamond-like carbon, DLC) and were preliminarily tested on smooth muscle cell depositions.
Czasopismo
Rocznik
Strony
575--586
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Institute of Optoelectronics, Military University of Technology,
autor
  • Gen. S. Kaliskiego Street, 00-908 Warszawa,
  • Poland Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków, Poland
autor
  • Institute of Optoelectronics, Military University of Technology,
autor
autor
  • Institute of Optoelectronics, Military University of Technology,
autor
  • Institute of Optoelectronics, Military University of Technology,
Bibliografia
  • [1] BÜTTNER C.C., SCHULZ U., Shark skin inspired riblet structures as aerodynamically optimized high temperature coatings for blades of aeroengines, Smart Materials and Structures 20(9), 2011, article 094016.
  • [2] CHOI T., JANG J.-H., ULLAL C.K., LEMIEUX M.C., TSUKRUK V.V, THOMAS E.L., The elastic properties and plastic behavior of two-dimensional polymer structures fabricated by laser interference lithography, Advanced Functional Materials 16(10), 2006, pp. 1324–1330.
  • [3] BHUSHAN B., YONG CHAE JUNG, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction, Progress in Materials Science 56(1), 2011, pp. 1–108.
  • [4] MCLEOD R.R., KOWALSKI B.A., COLE M.C., Two-color photo-initiation/inhibition lithography, Proceedings of SPIE 7591, 2010, article 759102.
  • [5] ERTORER E., VASEFI F., KESHWAH J., NAJIMINAINI M., HALFPAP C., LANGBEIN U., CARSON J.J., HAMILTON D.W., MITTLER S., Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies, Journal of Biomedical Optics 18(3), 2013, article 035002.
  • [6] DAURELIO G., BELLOSI A., SCITI D., CHITA G., ALLEGRETTI D., GUERRINI F., UV laser ablation of silicon carbide ring surfaces for mechanical seal applications, Proceedings of SPIE 4070, 2000, pp. 300–305.
  • [7] BARBEROGLOU M., ZORBA V., STRATAKIS E., SPANAKIS E., TZANETAKIS P., ANASTASIADIS S., FOTAKIS C., Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon, Applied Surface Science 255(10), 2009, pp. 5425–5429.
  • [8] BURROW G.M., GAYLORD T.K., Multi-beam interference advances and applications: nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures, Micromachines 2(2), 2011, pp. 221–257.
  • [9] MARCZAK J., RYCYK A., SARZYŃSKI A., STRZELEC M., KUSIŃSKI J., MAJOR R., Direct laser manufacturing of 1D and 2D micro- and submicro-scale periodic structures, Proceedings of SPIE 8703, 2013, article 87030F.
  • [10] LOVE C.A., COOK R.B., HARVEY T.J., DEARNLEY P.A., WOOD R.J.K., Diamond like carbon coatings for potential application in biological implants – a review, Tribology International 63, 2013, pp. 141–150.
  • [11] PRAWER S., KALISH R., ADEL M., Pulsed laser treatment of diamondlike carbon films, Applied Physics Letters 48(23), 1986, pp. 1585–1587.
  • [12] VOUAGNER D., BELEZNAI C., GIRARDEAU-MONTAUT J.P., TEMPLIER C., GONNORD H., A new method to determine laser damage threshold for thin diamond-like carbon films on silicon, Diamond and Related Materials 9(3–6), 2000, pp. 786–791.
  • [13] KONONENKO T.V., PIMENOV S.M., KONONENKO V.V., ZAVEDEEV E.V., KONOV V.I., DUMITRU G., ROMANO V., Laser-induced spallation in diamond-like carbon films, Applied Physics A 79(3), 2004, pp. 543–549.
  • [14] LACKNER J.M., WALDHAUSER W., EBNER R., FIAN A., JAKOPIC G., LEISING G., SCHÖBERL T., Pulsed laser deposition of silicon containing carbon thin films, Surface and Coatings Technology 177–178, 2004, pp. 360–364.
  • [15] MAJOR R., MAKSYMOW K., MARCZAK J., LACKNER J.M., KOT M., MAJOR B., Migration channels produced by laser ablation for substrate endothelialization, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(2), 2012, pp. 337–342.
  • [16] MÜCKLICH F., LASAGNI A., DANIEL C., Laser Interference Metallurgy – using interference as a tool for micro/nano structuring, International Journal of Materials Research 97(10), 2006, pp. 1337–1344.
  • [17] MARCZAK J., RYCYK A., SARZYŃSKI A., STRZELEC M., CZYŻ K., The Nd:YAG dual-channel laser system with Q-modulation for direct interference lithography, Photonics Letters of Poland 6(1), 2014, pp. 44–46.
  • [18] HUTMACHER D.W., Scaffolds in tissue engineering bone and cartilage, Biomaterials 21(24), 2000, pp. 2529–2543.
  • [19] YOON SUNG NAM, JUN JIN YOON, TAE GWAN PARK, A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive, Journal of Biomedical Materials Research 53(1), 2000, pp. 1–7.
  • [20] GOMES M.E., AZEVEDO H.S., MOREIRA A.R., ELLÄ V., KELLOMÄKI M., REIS R.L., Starch–poly-(ε-caprolactone) and starch–poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviour, Journal of Tissue Engineering and Regenerative Medicine 2(5), 2008, pp. 243–252.
  • [21] YOON SUNG NAM, TAE GWAN PARK, Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation, Journal of Biomedical Materials Research 47(1), 1999, pp. 8–17.
  • [22] SE HEANG OH, SOUNG GON KANG, EUN SEOK KIM, SANG HO CHO, JIN HO LEE, Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method, Biomaterials 24(22), 2003, pp. 4011–4021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd664831-7865-4b16-b9ee-4e109190b004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.