PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Load-deflection characteristic of fibre concrete based on waste ceramic aggregate

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Charakterystyka obciążenie-ugięcie fibrobetonów na bazie ceramicznego kruszywa odpadowego
Języki publikacji
EN
Abstrakty
PL
W artykule opisano badania fibrobetonów na bazie ceramicznego kruszywa odpadowego. Jako zbrojenie rozproszone zastosowano dwa rodzaje włókien (stalowe i polimerowe) w ilość nieprzekraczającej 1,0% objętościowo. W badaniach określono podstawowe właściwości zaproponowanych fibrobetonów takie jak: konsystencję, gęstość, wytrzymałość na ściskanie czy też moduł sprężystości. Jednak główny nacisk badawczy położono na określenie zależności pomiędzy obciążeniem i ugięciem dla zginanych elementów belkowych zgodnie z EN 14651:2005. Na podstawie określonych zależności wg EN, możliwe było wyznaczenie rezydualnych wytrzymałości na rozciąganie przy zginaniu oraz przyporządkowanie badanym kompozytom klas określonych przez The International Federation for Structural Concrete (fib).
Rocznik
Strony
213--230
Opis fizyczny
Bibliogr. 35 poz., tab., rys.
Twórcy
autor
  • Koszalin University of Technology
autor
  • Koszalin University of Technology
Bibliografia
  • 1. Achilleos C., Hadjimitsis D., Neocleous K., Pilakoutas K., Neophytou P., Kallis S.: Proportioning of Steel Fibre Reinforced Concrete Mixes for Pavement Construction and their Impact on Environment and Cost. Sustainability Journal. Vol. 3 (7), 965–983 (2011).
  • 2. Bentur A., Igarashi S., Kovler K.: Prevention of autogenous shrinkage in high strength concrete by internal curing using wet lightweight aggregates. Cement and Concrete Research 31 (11), 1587–1591 (2001).
  • 3. Borovikov I.P., Borovikov V.P.: STATISTICA: Data Preparation and Analysis. Filini. Moscow 1998.
  • 4. de Brito J., Pereira A.S., Correia J.R.: Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates. Cement and Concrete Composites. Vol. 27 (4), 429–433 (2005).
  • 5. Chiaia B., Fantilli A.P., Vallini P.: Evaluation of minimum reinforcement ratio in FRC members and application to tunnel linings. Materials and Structures. Vol. 40, 593–604 (2007).
  • 6. Collins F., Sanjayan J.G.: (1999) Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. Cement and Concrete Research. Vol. 29 (4), 607–610 (1999).
  • 7. Correia J.R., de Brito J., Pereira A.S.: Effects on concrete durability of using recycled ceramic aggregates. Materials and Structures. Vol. 39, 169–177 (2006).
  • 8. Ding Y.: Investigations into the relationship between deflection and crack mouth opening displacement of SFRC beam. Construction and Building Materials. Vol. 25, 2432–2440 (2011).
  • 9. Domski J.: Cracking moment in steel fibre reinforced concrete beams based on waste sand. “OVIDIUS” University Annals – Constantza, Series Civil Engineering, Year XIII (2011), Issue 13, 29–34 (2011).
  • 10. Hassen M., et al.: Ultrasonic measurements and static load tests in bridge evaluation. NDT&E International. Vol. 28, No. 6, 331–337 (1995).
  • 11. Hendriks C.F., Janssen G.M.T.: Use of recycled materials in construction. Materials and Structures. Vol. 36, 604–608 (2003).
  • 12. Johnston C.D.: Fibre reinforced cements and concretes. Gordon and Breach Science Publishers, Amsterdam 2001.
  • 13. Katzer J.: Steel fibers and steel fiber reinforced concrete in civil engineering. Pacific Journal of Science and Technology. Vol.7, No.1, 53–58 (2006).
  • 14. Katzer J.: Properties of Precast SFRCC Beams Under Harmonic Load. Science and Engineering of Composite Materials. Vol.15, No.2, 107–120 (2008).
  • 15. Katzer J., Domski J.: Quality and mechanical properties of engineered steel fibres used as reinforcement for concrete. Construction and Building Materials, Vol. 34, 243–248 (2012).
  • 16. Katzer J., Domski J.: Optimization of fibre reinforcement for waste aggregate cement composite. Construction and Building Materials. Vol. 38, 790–795 (2013).
  • 17. Katzer J., Kobaka J.: The assessment of fine aggregate pit deposits for concrete production. Kuwait Journal of Science and Engineering. Vol. 33, Issue 2, 165–174 (2006)
  • 18. Katzer J., Kobaka J.: Ultrasonic pulse velocity test of SFRC. Proceedings, The 2nd Central European Congress on Concrete Engineering “Concrete Structures for Traffic Network”, 21–22 September 2006, Hradec Kralove, Czech Republic, 389–392 (2006).
  • 19. Katzer J., Kobaka, J.: Harnessing Waste Fine Aggregate for Sustainable Production of Concrete Precast Elements. Rocznik Ochrona Środowiska (Annual Set The Environment Protection), 12, 33–45 (2010).
  • 20. Kohno K., et al.: Effects of artificial lightweight aggregate on autogenous shrinkage of concrete. Cement and Concrete Research. Vol. 29 (2), 611–614 (1999).
  • 21. Komlos K., et al.: Ultrasonic Pulse velocity Test of Concrete Properties as Specified in Various Standards. Cement and Concrete Composites. Vol. 18, 357–364 (1996).
  • 22. Kovler K., Jensen O.M.: Novel techniques for concrete curing. Concrete International. Vol. 27 (9), 39–42 (2005).
  • 23. Maidl B.R.: Steel fibre reinforced concrete. Ernst & Sohn. Berlin 1995.
  • 24. Malhorta V.M., Mehta P.K.: High-Performance High-Volume Fly Ash Concrete. SCMSD Inc., second revised edition. Ottawa 2005.
  • 25. Müller A.: Lightweight aggregate produced from fine fraction of construction and demolition waste. Design for Deconstruction and Materials Reuse. Proceedings of the CIB Task Group 39 – Deconstruction Meeting. Karlsruhe 2002.
  • 26. Neville A.M.: Properties of Concrete. Longman, 4th Edition, Addison Wesley Longman, Harlow, Essex 1995.
  • 27. Oh B.H., Park D.G, Kim J.C., Choi Y.C.: Experimental and theoretical investigation on the postcracking inelastic behaviour of synthetic fibre reinforced concrete beams. Cement and Concrete Research. Vol.35, 384–392 (2005).
  • 28. Ponikiewski T.: Rheological properties of fresh polypropylene fiber reinforced mortar and concrete. BFT International Concrete Plant + Precast Technology. Issue 4, 16–18 (2011).
  • 29. Ponikiewski T.: The rheology of fresh steel fibre reinforced self-compacting mixtures. ACEE Architecture Civil Engineering Environment. Vol.4, No.2, 65–72 (2011).
  • 30. Prisco M., Plizzari G., Vandewalle L.: Fibre reinforced concrete: new design perspectives. Materials and Structures. Vol. 42, 1261–1281 (2009).
  • 31. Qasrawi H.Y.: Concrete strength by combined non-destructive methods Simply and reliably predicted. Cement and Concrete Research. Vol.30 739–746 (2000).
  • 32. Suzuki M., Meddah M.S., Sato R.: Use of porous ceramic waste aggregates for internal curing of high-performance concrete. Cement and Concrete Research. Vol. 39, 373–381 (2009).
  • 33. Weber S., Reinhardt H.W.: A new generation of high performance concrete: concrete with autogenous curing. Advanced Cement Based Material. Vol. 6 (2), 59–68 (1997).
  • 34. Zhutovsky S., Kovler K., Bentur A.: Influence of wet lightweight aggregate on mechanical properties of concrete at early ages. Materials Structure. Vol. 35, 97–101 (2002).
  • 35. Zhutovsky S., Kovler K., Bentur A.: Influence of cement paste matrix properties on the autogenous curing of high-performance concrete. Cement & Concrete Composites. Vol. 26 (5), 499–507 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd612dc7-fefe-44ba-bb3d-ec8744bbf40f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.