PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Composites of rigid polyurethane foam and shredded car window glass particles - structure and mechanical properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This publication describes the effect of shredded (milled) car windows on the structure and mechanical properties of rigid polyurethane (PUR) foam. The multi-stage shredding (crushing + milling) process for car windows provides an effective method for reusing the material as a filler. The proposed method of the mechanical recycling of windshields is energy-consuming, which increases the costs of recycling processes. At the same time, this method is scalable, which allows the processes to be transferred from the laboratory to the industrial scale. The mechanical properties of the foams reinforced with shredded glass were assessed by performing a compression test in accordance with standard PN EN 826. The obtained results demonstrate the effectiveness in increasing the compressive strength for the two-component polyurethane foam with densities of 30, 50 and 70 kg/m3. The addition of milled glass in the amounts of 10, 20, 30% by weight increases the compressive strength of the rigid foams from 10 to even 90%. The filler particles create areas where new pores form, resulting in the reinforced PUR foams having more small pores than the neat PUR foams. The sharp edges of the glass particles act as “cutting blades” for the pores that form, which is manifested by the foil effect on the filler surface.
Rocznik
Strony
135--140
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Center of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
  • Center of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
Bibliografia
  • [1] Gama N.V., Ferreira A., Barros-Timmons A., Polyurethane foams: Past, present, and future, Materials 2018, 11, 10, 1841, DOI: 10.3390/ma11101841.
  • [2] Asadi Khanouki M., Ohadi A., Improved acoustic damping in polyurethane foams by the inclusion of silicon dioxide nanoparticles, Advances in Polymer Science 2018, 37, 8, 2799-2810, DOI: 10.1002/adv.21952.
  • [3] Figlus T., Koziol M., Kuczyński Ł., The effect of selected operational factors on the vibroactivity of upper gearbox housings made of composite materials, Sensors 2019, 19, 4240, DOI: 10.3390/s19194240.
  • [4] Linul E., Serban D.A., Voiconi T., Marsavina L., Sadowski T., Energy-absorption and efficiency diagrams of rigid PUR foams, Key Engineering Materials 2014, 601, 246-249, DOI: 10.4028/www.scientific.net/kem.601.246.
  • [5] Koziol M., Evaluation of classic and 3D glass fiber reinforced polymer laminates through circular support drop weight tests, Composites Part B 2019, 168, 561-571, DOI: 10.1016/j.compositesb.2019.03.078.
  • [6] Członka S., Bertino M.F., Strzelec K., Strąkowska A., Masłowski M., Rigid polyurethane foams reinforced with solid waste generated in leather industry, Polymer Testing 2018, 69, 225-237, DOI: 10.1016/j.polymertesting.2018.05.013.
  • [7] Zhang J., Hori N., Takemura A., Reinforcement of agricultural wastes liquefied polyols based polyurethane foams by agricultural wastes particles, Journal of Applied Polymer Science 2021, 138(23), 50583, DOI: 10.1002/app.50583.
  • [8] Tang G., Liu X., Zhou L., Zhang P., Deng D., Jiang H., Steel slag waste combined with melamine pyrophosphate as a flame retardant for rigid polyurethane foams, Advanced Powder Technology 2020, 31(1), 279-286, DOI: 10.1016/j.apt.2019.10.020.
  • [9] Tang G., Liu X., Yang Y., Chen D., Zhang H., Zhou L, Zhang P., Jiang H., Deng D., Phosphorus-containing silane modified steel slag waste to reduce fire hazards of rigid polyurethane foams, Advanced Powder Technology 2020, 31(4), 1420-1430, DOI: 10.1016/j.apt.2020.01.019.
  • [10] Tiuc A.E., Vermeşan H., Gabor T., Vasile O., Improved sound absorption properties of polyurethane foam mixed with textile waste, Energy Procedia 2016, 85, 559-565, DOI: 10.1016/j.egypro.2015.12.245.
  • [11] de Mello D., Pezzin S.H., Amico S.C., The effect of post-consumer PET particles on the performance of flexible polyurethane foams, Polymer Testing 2009, 28(7), 702-708, DOI: 10.1016/j.polymertesting.2009.05.014.
  • [12] Xue B.L., Wen J.L., Sun R.C., Lignin-based rigid polyurethane foam reinforced with pulp fiber: synthesis and characterization, ACS Sustainable Chemistry & Engineering 2014, 2(6), 1474-1480, DOI: 10.1021/sc5001226.
  • [13] Barczewski M., Kurańska M., Sałasińska K., Michałowski S., Prociak A., Uram K., Lewandowski K., Rigid polyurethane foams modified with thermoset polyester-glass fiber composite waste, Polymer Testing 2020, 81, 106190, DOI: 10.1016/j.polymertesting.2019.106190.
  • [14] Kim S.H., Park H.C., Jeong H.M., Kim B.K., Glass fiber reinforced rigid polyurethane foams, Journal of Materials Science 2010, 45(10), 2675-2680, DOI: 10.1007/s10853-010-4248-3.
  • [15] Członka S., Strąkowska A., Kairyte A., Effect of walnut shells and silanized walnut shells on the mechanical and thermal properties of rigid polyurethane foams, Polymer Testing 2020, 87, 106534, DOI: 10.1016/j.polymertesting. 2020.106534.
  • [16] Zieleniewska M., Leszczyński M.K., Szczepkowski L., Bryśkiewicz A., Krzyżowska M., Bień K., Ryszkowska J., Development and applicational evaluation of the rigid polyurethane foam composites with egg shell waste, Polymer Degradation and Stability 2016, 132, 78-86, DOI: 10.1016/j.polymdegradstab.2016.02.030.
  • [17] Członka S., Bertino M.F., Strzelec K., Rigid polyurethane foams reinforced with industrial potato protein, Polymer Testing 2018, 68, 135 145, DOI: 10.1016/j.polymertesting. 2018.04.006.
  • [18] Strąkowska A., Członka S., Kairyte A., Rigid polyurethane foams reinforced with poss-impregnated sugar beet pulp filler, Materials 2020, 13(23), 5493, DOI: 10.3390/ma13235493.
  • [19] Hejna A., Korol J., Kosmela P., Kuzmin A., Piasecki A., Kulawik A., Chmielnicki B., By-products from food industry as a promising alternative for the conventional fillers for wood-polymer composites, Polymers 2021, 13, 6, 893, DOI: 10.3390/polym13060893.
  • [20] Toroń B., Szperlich P., Koziol M., SbSI composites based on epoxy resin and cellulose for energy harvesting and sensors – The influence of sbsi nanowires conglomeration on piezoelectric properties, Materials 2020, 13, 4, art. 902, DOI: 10.3390/ma13040902.
  • [21] Cimavilla-Román P., Pérez-Tamarit S., Santiago-Calvo M., Rodríguez-Pérez M.Á., Influence of silica aerogel particles on the foaming process and cellular structure of rigid polyurethane foams, European Polymer Journal 2020, 135, 109884, DOI: 10.1016/j.eurpolymj.2020.109884.
  • [22] Kim M.W., Kwon S.H., Park H., Kim B.K. Glass fiber and silica reinforced rigid polyurethane foams, eXPRESS Polymer Letters 2017, 11(5), DOI:10.3144/expresspolymlett. 2017.36.
  • [23] Smoleń J., Pawlik T., Sopicka-Lizer M., Michalik D., Structure and properties of lightweight ceramic aggregates based on local silesian waste materials, Arch. Metall. Mater. 2018, 63(3), 1321-1328, DOI: 10.24425/123807.
  • [24] Godzierz M., Adamczyk B., Pawlik T., Sopicka-Lizer M., Mechanical and physical properties of light-weight ceramic aggregates prepared from waste materials, Waste Biomass, Valorization 2020, 11(5), 2309-2319, DOI: 10.1007/s12649-018-0464-x.
  • [25] Tupy M., Mokrejs P., Merinska D., Svoboda P., Zvonicek J., Windshield recycling focused on effective separation of PVB sheet, Journal of Applied Polymer Science 2014, 131(4), DOI: 10.1002/app.39879.
  • [26] Mutlu T., Yegin S.K., Sen G., Dirikolu M.H., Design and implementation of a glass fiber reinforced hybrid polimer matrix composite washing machine drum support replacing cast aluminum alloy, Composites Theory and Practice 2021, 21(1-2), 54-58.
  • [27] Dhotre P.K., Chikkol S.V., Free vibration studies on skew sandwich plates, Composites Theory and Practice 2020, 20(3-4), 118-127.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd5f0e07-9940-40a3-9613-3cd867e412ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.