PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation on the preparation and mechanical properties of porous Cu35Ni15Cr alloy for a molten carbonate fuel cell

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The preparation process of porous Cu35Ni15Cr alloy was studied in this paper. The effect of ball milling time and sintering temperature on the porosity of Cu35Ni15Cr alloy was identified. It was found that 18 h ball milling and 950 degrees C sintering are the most promising parameters for the preparation of porous Cu35Ni15Cr alloy. The products have a similar to ~62 % porosity. The alloy consists of an alpha phase and beta phase. The influence of deformation temperature and loading rate on the mechanical properties of Cu35Ni15Cr alloys was investigated. The results show that with decreasing deformation temperature, the yield strength and elastic modulus of the porous alloy increase. With the increase of loading rate, the yield strength of these alloys shows an increasing trend, but the elastic modulus is on a steady level.
Wydawca
Rocznik
Strony
887--893
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Key Laboratory of Efficient and Clean Energy Utilization, College of Hunan Province, School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
autor
  • Key Laboratory of Efficient and Clean Energy Utilization, College of Hunan Province, School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
autor
  • Key Laboratory of Efficient and Clean Energy Utilization, College of Hunan Province, School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
autor
  • Key Laboratory of Efficient and Clean Energy Utilization, College of Hunan Province, School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
autor
  • Key Laboratory of Efficient and Clean Energy Utilization, College of Hunan Province, School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
Bibliografia
  • [1] Frangini S., J. Power Sources, 182 (2008), 462.
  • [2] Andujar J.M., Segrua F., Renew Sustain Ener. Rev., 13 (2009), 2309.
  • [3] Li G., Thomas B.G., Stubbins J.F., Metall. Mater. Trans. A, 31 (2000), 2491.
  • [4] Tsuyoshi N., Vinay G., Yoshimi O., Meiten K., Ram N.S., Alain T., Etienne D., J Power Sources, 104 (2002), 181.
  • [5] Chawla N., Deng X., Mat. Sci. Eng. A-Struct., 390 (2005), 98.
  • [6] Cedergren J., Melin S., Lidstrom P., Power Technol., 160 (2005), 161.
  • [7] Wee J.H., Mater. Chem. Phys., 98 (2006), 273.
  • [8] Kim D., Lee I., Lim H., Lee D., J. Power Sources, 109 (2002), 347.
  • [9] Kim Y.S., Lee K.Y., Chun H.S., J. Power Sources, 99 (2001), 26.
  • [10] Wee J.H., Mater. Chem. Phys., 101 (2007), 322.
  • [11] Lee H., Lee I., Lee D., Lim H., J. Power Sources, 162 (2006), 1088.
  • [12] Kim G., Moon Y., Lee D., J. Power Sources, 104 (2002), 181.
  • [13] Lei P., Chen J., Li W., Ren Y.J., Qiu W., Chen J.L., Appl. Mech. Mat., 303 (2013), 2490.
  • [14] Chen J., Huang Z.H., Li W., Ren Y.J., He Z., Qiu W., He J.J., Chen J.L., Key Eng. Mat., 573 (2014), 105.
  • [15] Wang B., Zhang E., Int. J. Mech. Sci., 50 (2008), 550.
  • [16] Kim Y.S., Chun H.S., J. Power Source, 84 (1999), 80.
  • [17] Hwang E.R., Park J.W., Kim Y.D., Kim S.J., Kang S.G., J. Power Source, 69 (1997), 55.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd5bf09b-7856-4b35-8bd9-57b41c9c47e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.