PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Thermo-mechanical processing and microstructure evolution of high-manganese austenitic TRIP-type steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to determine the influence of hot-working conditions on microstructure evolution and phase composition of new-developed high-manganese austenitic TRIP-type steels. Design/methodology/approach: The hot-working behaviour was determined in continuous and multistage compression tests performed in a temperature range of 850 to 1100°C by the use of the Gleeble 3800 thermo-mechanical simulator. The processes controlling work hardening and removing it were identified by microstructure evolution observations in different stages of compression with the amount of true strain 4x0.23. Phase composition of steels was confirmed by X-ray diffraction analysis. Findings: It was found that they have austenite microstructure with numerous annealing twins in the initial state. Continuous compression tests realized in the temperature range from 850 to 1050°C with the strain rate of 0.1, 1 and 10 s-1 enabled determination of yield stress values and values of εmax deformations - corresponding to maximum flow stress. The investigated steels are characterized by high values of flow stress from 120 to 380 MPa. Results of the multi-stage compression proved that applying the true strain 4x0.23 gives the possibility to refine the austenite microstructure. Research limitations/implications: To determine in detail the microstructure evolution during industrial rolling, the hot-working schedule should take into account real number of passes and higher strain rates. Practical implications: The obtained microstructure - hot-working conditions relationships and stress-strain curves can be useful in determination of power-force parameters of hot-rolling for sheets with fine-grained austenitic structures. Originality/value: The hot-working behaviour and microstructure evolution in various conditions of plastic deformation for new-developed high-manganese austenitic TRIP-type steels with Nb and Ti microadditions were investigated.
Rocznik
Strony
59--66
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] G. Frommeyer, U. Brüx, K. Brokmeier, R. Rablbauer, Development, microstructure and properties of advanced high-strength and supraductile light-weight steels based on Fe-Mn-Al-Si-(C), Proceedings of the 6th International Conference “Processing and Manufacturing of Advanced Materials” Thermec’2009, Berlin, 2009, 162.
  • [2] G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes, Iron and Steel Institute of Japan International 43 (2003) 438-446.
  • [3] O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development -properties - application, International Journal of Plasticity 16 (2000) 1391-1409.
  • [4] J.A. Jiménez, G. Frommeyer, Analysis of the microstructure evolution during tensile testing at room temperature of high-manganese austenitic steel, Materials Characterization 6 (2010) 221-226.
  • [5] R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry, Archives of Civil and Mechanical Engineering 8/2 (2008) 103-117.
  • [6] O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships, Current Opinion in Solid State and Materials Science 15 (2011) 141-168.
  • [7] Z. Gronostajski, A. Niechajowicz, S. Polak, Prospects for the use of new-generation steels of the ahss type for collision energy absorbing components, Current Opinion in Solid State and Materials Science 15 (2011) 141-168.
  • [8] S. Vercammen, B. Blanpain, B.C. De Cooman, P. Wollants, Mechanical behaviour of an austenitic Fe-30Mn-3Al-3Si and the importance of deformation twinning, Acta Materialia 52 (2004) 2005-2012.
  • [9] A. Grajcar, W. Borek, The thermo-mechanical processing of high-manganese austenitic TWIP-type steels, Archives of Civil and Mechanical Engineering 8/4 (2008) 29-38.
  • [10] L.A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution and phase composition of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 218-225.
  • [11] L.A. Dobrzański, W. Borek, Hot-working of advanced high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 507-526.
  • [12] L.A. Dobrzański, W. Borek, Hot-Working Behaviour of Advanced High-Manganese C-Mn-Si-Al Steels, Materials Science Forum 654-656 (2010) 266-269.
  • [13] L.A. Dobrzański, W. Borek, Microstructure forming processes of the 26Mn-3Si-3Al-Nb-Ti steel during hot-working conditions, Journal of Achievements in Materials and Manufacturing Engineering 40/1 (2010) 25-32.
  • [14] L.A. Dobrzański, W. Borek, Hot-working of advanced high-manganese austenitic steel, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 507-526.
  • [15] L.A. Dobrzański, W. Borek, Hot deformation and recrystallization of advanced high-manganese austenitic TWIP steels, Journal of Achievements in Materials and Manufacturing Engineering 46/1 (2011) 71-78.
  • [16] L.A. Dobrzański, W. Borek, Hot-rolling of high-manganese Fe - Mn - (Al, Si) TWIP steels, Proceedings of 8th International Conference “Industrial Tools and Material Processing Technologies” ICIT&MPT’2011, Slovenia, 2011, 117-120.
  • [17] L.A. Dobrzański, W. Borek, Hot-rolling of advanced high-manganese C-Mn-Si-Al steels, Materials Science Forum 706-709 (2012) 2053-2058.
  • [18] N. Cabanas, N. Akdut, J. Penning, B.C. De Cooman, High-temperature deformation properties of austenitic Fe-Mn alloys, Metallurgical and Materials Transactions A 37 (2006) 3305-3315.
  • [19] A. Grajcar, M. Opiela, G. Fojt-Dymara, The influence of hot-working conditions on a structure of high-manganese steel, Archives of Civil and Mechanical Engineering 9/3 (2009) 49-58.
  • [20] A. Grajcar, Hot-working in the γ+α region of TRIP-aided microalloyed steel, Archives of Materials Science and Engineering 28/12 (2007) 743-750.
  • [21] J. Adamczyk, A. Grajcar, Heat treatment and mechanical properties of low-carbon steel with dual-phase microstructure, Journal of Achievements in Materials and Manufacturing Engineering 22/1 (2007) 13-20.
  • [22] J. Adamczyk, A. Grajcar, Structure and mechanical properties of DP-type and TRIP-type sheets, Journal of Materials Processing Technology 162-163 (2005) 267-274.
  • [23] A. Grajcar, Effect of hot-working in the γ+α range on a retained austenite fraction in TRIP-aided steel, Journal of Achievements in Materials and Manufacturing Engineering 22/2 (2007) 79-82.
  • [24] K.T. Park, K.G. Jin, S.Ho Han, S. Woo Hwang, K. Choi, C. Soo Lee, Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition, Materials Science and Engineering A 527 (2010) 3651-3661.
  • [25] A. Grajcar, Selection of the hot-working conditions for TRIP-type microalloyed steel, Archives of Materials Science and Engineering 31/2 (2008) 75-78.
  • [26] G. Dini, A. Najafizadeh, R. Ueji, S.M. Monir-Vaghefi, Tensile deformation behavior of high manganese austenitic steel: The role of grain size, Materials and Design 31 (2010) 3395-3402.
  • [27] R.F. Kuble, M. Berveiller, P. Buessler, Semi phenomenological modelling of the behavior of TRIP steels, International Journal of Plasticity 27 (2011) 299-327.
  • [28] A. Weidner, S. Martin, V. Klemm, U. Martin, H. Biermann, Stacking faults in high-alloyed metastable austenitic cast steel observed by electron channelling contrast imaging, Scripta Materialia 64 (2011) 513-516.
  • [29] F. Lu, P.Yang, L. Meng, F. Cui, H. Ding, Influences of Thermal Martensites and Grain Orientations on Strain-induced Martensites in High Manganese TRIP/TWIP Steels, Journal of Materials Science and Technology 27/3 (2011) 257-265.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd5b25ab-8e17-45ee-a522-221a29148bcb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.