PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Study of the Natural Oscillations of Perforated Vibrating Surfaces with Holes of Complex Geometry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The widespread use of perforated vibrating surfaces in various industries requires maximum productivity and construction reliability. The research task is to determine the significant factors and their degree of influence on the natural oscillations of vibrating surfaces with multiple holes of complex geometry. For this purpose, studies were carried out for three samples of plates: non-perforated, with basic round holes and holes of complex geometry in the form of a five-petal epicycloid. Studies of the natural oscillations of perforated vibrating surfaces have been conducted using the finite element method in Abaqus, which has proved sufficient accuracy of calculations. The dependencies of the natural oscillation frequency of perforated surface samples on their thickness, partition width between the holes, material type, and fixing method have been obtained. In addition, the analysis involved the study of eight modes of oscillation common in practice. The dependencies of the natural oscillation frequency of perforated surface on the relative parameters of ligament efficiency and stiffness coefficient have also been obtained. These parameters take into account the ratios of the partition width between the holes to the plate thickness and the dimensions of the holes. The research results allow to obtain levels of influence of the perforated vibrating surface parameters on their natural oscillations frequency. The obtained research results make it possible to further determine the absence of damage between the holes and predict the durability of perforated vibration surfaces in the presence of holes of complex geometry.
Twórcy
  • Department of Applied Mechanics, Lublin University of Technology, 20-618 Lublin, Poland
  • Department of Fundamentals of Production Engineering, Lublin University of Technology, 20-618 Lublin, Poland
  • Sumy National Agrarian University, 160 Herasyma Kondratieva Street, Sumy, 40000, Ukraine
  • Department of Machine Design and Mechatronics, Lublin University of Technology, 20-618 Lublin, Poland
Bibliografia
  • 1. Thomas D. Effect of Mechanical Cut-Edges on the Fatigue and Formability Performance of Advanced High-Strength Steels. J. Fail. Anal. And Preven. 2012; 12: 518–531, https://doi.org/10.1007/s11668-012-9591-z.
  • 2. Lange K. Umformtechnik – Handbuch für Industrie und Wissenschaft, Band 2: Massivumformung (2nd edition), Springer-Verlag, Berlin, Germany, 1988.
  • 3. Merklein M., Allwood J., Behrens B.-A., Brosius A., Hagenah H., Kuzman K., Mori K., Tekkaya A., Weckenmann A. Bulk forming of sheet metal. CIRP Annals 2012; 61(2): 725–745, https://doi. org/10.1016/j.cirp.2012.05.007.
  • 4. Makinde O., Ramatsetse B., Mpofu K. Review of vibrating screen development trends: Linking the past and the future in mining machinery industries. International Journal of Mineral Processing 2015; 145: 17–22, https://doi.org/10.1016/j. minpro.2015.11.001.
  • 5. Honghai Liu, Jie Jia, Nieyangzi Liu, Xiaojin Hu, Xiong Zhou. Effect of material feed rate on sieving performance of vibrating screen for batch mixing equipment. Powder Technology 2018; 338: 898- 904, https://doi.org/10.1016/j.powtec.2018.07.046.
  • 6. Tishchenko L., Ol’shanskii V., Ol’shanskii V. On velocity profiles of an inhomogeneous vibrofluid- ized grain bed on a shaker. Journal of Engineering Physics and Thermophysics 2011; 84(3): 509–514, https://doi.org/10.1007/s10891-011-0498-4.
  • 7. Hou J., Liu X., Zhu H., Ma Z., Tang Z., Yu Y., Jin J., Wang W. Design and Motion Process of Air-Sieve Castor Cleaning Device Based on Discrete Element Method. Agriculture 2023; 13: 1130, https://doi. org/10.3390/agriculture13061130.
  • 8. Jesny S., Prasobh G.R. A Review on Size Separation International Journal of Pharmaceutical Research and Applications 2022; 7(2): 286-296, https://doi. org/10.35629/7781-0702286296.
  • 9. Tishchenko L., Kharchenko S., Kharchenko F., Bredykhin V., Tsurkan O. Identification of a mixture of grain particle velocity through the holes of the vibrating sieves grain separators. Eastern-European Journal of Enterprise Technologies 2016; 2(7(80)): 63–69, https://doi.org/10.15587/1729-4061.2016.65920.
  • 10. Li Z., Tong X. A study of particles penetration in sieving process on a linear vibration screen. Int. J. Coal. Sci. Technol. 2015; 2: 299–305, doi. org/10.1007/s40789-015-0089-7.
  • 11. Wang Z., Peng L., Zhang Ch., Qi L., Liu Ch., Zhao Yu. Research on impact characteristics of screening coals on vibrating screen based on discrete-finite element method. Energy Sources 2020; Part A: Recovery, Utilization, and Environmental Effects, 42; 16: 1963–1976, https://doi.org/10.1080/15567036. 2019.1604905.
  • 12. Lenggana B.W., Prabowo A.R., Ubaidillah U., Imaduddin F., Surojo E., Nubli H., Adiputra R. Effects of mechanical vibration on designed steel- based plate geometries: behavioral estimation subjected to applied material classes using finite-element method. Curvedand Layer. Struct. 2021; 8: 225–240, https://doi.org/10.1515/cls-2021-0021.
  • 13. Leissa A.W.. Literature Review: Survey and Analysis of the Shock and Vibration Literature: Recent Studies in Plate Vibrations: 1981-85 Part I. Classical Theory. The Shock and Vibration Digest 1987; 19: 11-18. https://doi.org/10.1177/058310248701900204.
  • 14. Nkounhawa P., Ndapeu D., Kenmeugne B., Beda T. Analysis of the Behavior of a Square Plate in Free Vibration by FEM in Ansys. World Journal of Mechanics 2020; 10: 11–25, https://doi.org/10.4236/ wjm.2020.102002
  • 15. Kharchenko S., Kharchenko F., Samborski S., Paśnik J., Kovalyshyn S., Sirovitskiy K. Influence of Physical and Constructive Parameters on Durability of Sieves of Grain Cleaning Machines. Advances in Science and Technology Research Journal 2022; 16(6): 156–165. https://doi. org/10.12913/22998624/156128.
  • 16. Kalita, K., Haldar, S. Free Vibration Analysis of Rectangular Plates with Central Cutout. Cogent Engineering 2016; 3, 1163781. https://doi.org/10. 1080/23311916.2016.1163781,
  • 17. Israr A. Vibration analysis of cracked aluminium plates. PhD thesis, University of Glasgow 2008, 181 p.
  • 18. Kharchenko S., Kovalyshyn S., Zavgorodniy A., Kharchenko F., Mikhaylov Y. Effective sifting of flat seeds through sieve. INMATEH-Agricultural Engineering 2019; 58(2): 17–26. https://doi. org/10.35633/INMATEH-58-02.
  • 19. Kharchenko S. Intensification of grain sifting on flat sieves of vibration grain separators: monograph. Kharkiv: Dissa Plus, 2017, 217.
  • 20. Gharaibeh M.A., Obeidat A.M. Vibrations Analysis of Rectangular Plates with Clamped Corners. Open Engineering 2018; 8(1): 275–283.
  • 21. Senjanović I., Tomic M., Vladimir N., Hadžić N. An Analytical Solution to Free Rectangular Plate Natural Vibrations by Beam Modes – Ordinary and Missing Plate Modes. Transactions of FAMENA 2016; 40: 1–18. https://doi.org/10.21278/TOF.40301.
  • 22. Rzeczkowski J., Samborski S. Experimental and Numerical Research of Delamination Process in CFRP Laminates with Bending-Twisting Elastic Couplings. Materials 2022; 15: 7745. https://doi. org/10.3390/ma15217745.
  • 23. Kemparaju H, Samal P. Experimental Investigations on Free Vibration of Plates. Journal of Testing and Evaluation 2019; 47(4): 2750–64.
  • 24. Jayavardhan H.K., Samal P.K. Effect of Shape of Cut-out on Natural Frequency of Square Plate. IOP Conf. Series: Materials Science and Engineering 2021; 1189 (2021): 012028. https://doi. org/10.1088/1757-899X/1189/1/012028
  • 25. Pavan Kishore M.L., Rajesh C.H., Komawar R. Free vibrational characteristics determination of plates with various cutouts. Vibroengineering Procedia 2019; 22(4): 2345–0533, https://doi. org/10.21595/vp.2018.20286.
  • 26. Merneedi A., RaoNalluri M., Rao V.V.S. Free vibration analysis of a thin rectangular plate with multiple circular and rectangular cut-outs. Journal of Mechanical Science and Technology 2017; 31(11): 5185–5202.
  • 27. Torabi K,. Azadi A.R. Vibration Analysis for Rectangular Plate Having a Circular Central Hole with Point Support by Rayleigh-Ritz Method. Journal of Solid Mechanics 2014; 6(1): 28-42.
  • 28. Samborski S, Wieczorkiewicz J., Rusinek R., Dziedzic J. Methodology of structures damage estimation in case of cantilever isotropic beam. Journal of technology and exploitation in mechanical engineering 2015; 1: 1-2.
  • 29. Kharchenko, S.; Samborski, S.; Kharchenko, F.; Mitura, A.; Paśnik, J.; Korzec, I. Identification of the Natural Frequencies of Oscillations of Perforated Vibrosurfaces with Holes of Complex Geometry. Materials 2023, 16, 5735. https://doi.org/10.3390/ ma16175735.
  • 30. Kharchenko S., Samborski S., Kharchenko F. Іntensification of technological processes of equipment for post-harvest processing of grain. Study of reliability of sieves with complex shapes of holes. 1 st Workshop on Experimental and Computational Mechanics “WECM’22” + DIACMEC Lublin, Poland, June 1st 2022, 12.
  • 31. Kharchenko S., Sumborski S.. Reliability studies of sieves with holes of complex geometric shape. Multidisciplinary conference for young researchers Sustainable Development in Wartime Ukraine and the World 25.11.2022 (Prague, Czech Republic), 20–21.
  • 32. Ajay C., Muthuveerappan A., Gopalakrishnan V., et al. Vibration Analysis of Fully Perforated Rectangular Plates with Circular Perforations. SAE Technical Paper 2021-28-0195, 2021, https://doi. org/10.4271/2021-28-0195.
  • 33. Jhung M.J., Jeong K.H. Free vibration analysis of perforated plate with square penetration pattern using equivalent material properties, Nuclear Engineering and Technology 2015; 47(4): 500–511, https://doi.org/10.1016/j.net.2015.01.012.
  • 34. Xue C., Zhu B., Liu Xi, Nekomoto Y., Liu J., Liu D. Random vibration characteristics of perforated plates in parallel flow IOP Conf. Series: Earth and Environmental Science240 2019; 062005, IOP Publishing, https://doi.org/10.1088/1755-1315/240/6/062005.
  • 35. Kowal M., Pietras D. Carbon Fibre Reinforced Polymer Fatigue Strengthening of Old Steel Material. Advances in Science and Technology Research Journal 2023; 17(1): 197–209. https://doi. org/10.12913/22998624/156216.
  • 36. Cho D.S., Vladimir N., Choi T.M. Approximate natural vibration analysis of rectangular plates with openings using assumed mode method. International Journal of Naval Architecture and Ocean Eng. 2013; 5(3): 478–491. https://doi.org/10.2478/ IJNAOE-2013-014.
  • 37. Senjanović I., Vladimir N., Cho D.S., Choi T.M. Vibration Analysis of Thick Plates: Analytical and Numerical Approaches. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering – OMAE 2014. 4. https://doi. org/10.1115/OMAE2014-23273.
  • 38. Senjanović I., Vladimir N., Tomic M. An advanced theory of moderately thick plate vibrations. Journal of Sound and Vibration 2013; 332: 1868–1880. https://doi.org/10.1016/j.jsv.2012.11.022.
  • 39. Sadek K., Lueke J., Moussa W. A Coupled Field Multiphysics Modeling Approach to Investigate RF MEMS Switch Failure Modes under Various Operational Conditions. Sensors 2009; 9: 7988–8006. https://doi.org/10.3390/s91007988
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd5591a2-5b7d-4593-b8ed-e3e37d7ddd32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.