PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary microstructural research of clay solid bricks taken from historic buildings located in Poland

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of the preliminary experimental research and analysis of the structure of samples of clay solid bricks from six historical buildings erected in Poland in the years 1300 to 1910. Images obtained with a scanning electron microscope; parameters characterizing the pore space of the ceramic material, which were obtained using mercury porosimetry; and chemical composition identified using an energy dispersive X-ray spectroscopy, were analyzed. The test results showed that as the age of the brick increases, the homogeneity of its structure decreases, the chemical composition of all samples is quite similar, and in the tested samples, large disproportions in the percentage of pore width in individual ranges can be observed. An indicator P-index useful in comparing the studied structures was proposed, based on the knowledge of the share of the pores’ width within the adopted ranges.
Rocznik
Strony
art. no. e159, 2024
Opis fizyczny
Bibliogr. 37 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Department of Materials Engineering and Construction Processes, Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
  • Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
autor
  • Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • 1. WTA Merkblatt 4-10-15/D, Injektionsverfahren mit zertifizierten Injektionsstoffen gegen kapillaren Feuchtetransport, Wissen-schaftlich-Technische Arbeits gemeinschaft für Bauwerkserhaltung und Denkmalpflege e.V., München 2015.
  • 2. Weber J. Horizontalsperren im Injektionsverfahren. In: Weber J, editor. Bauwerksabdichtung in der Altbausanierung: Verfahren und juristische Betrachtungsweise. Wiesbaden: Springer; 2018.p. 257–304.
  • 3. Shakir AA, Mohammed AA. Manufacturing of bricks in the past, in the present and in the future: a state of the art review. Int J Adv Appl Sci. 2013;2(3):145–56. https://doi.org/10.11591/ijaas.v2i3.1751.
  • 4. Coletti C, Cultrone G, Maritana L, Mazzoli C. Combined multi-analytical approach for study of pore system in bricks: how much porosity is there? Mater Charact. 2016;121:80–92. https://doi.org/10.1016/j.matchar.2016.09.024.
  • 5. Elert K, Cultrone G, Navarro CR, Pardo ES. Durability of bricksused in the conservation of historic buildings – influence of composition and microstructure. J Cultur Herit. 2003;4(2):91–9.https://doi.org/10.1016/S1296-2074(03)00020-7.
  • 6. Stryszewska T, Kańka S. Forms of damage of bricks subjectsto cyclic freezing and thawing in actual conditions. Materials. 2019;12(7):1165. https://doi.org/10.3390/ma12071165.
  • 7. Giaccone D, Santamaria U, Corradi M. An experimental study on the effect of water on historic brickwork masonry. Heritage. 2020;3(1):29–46.
  • 8. Pérez-Bella JM, Domínguez-Hernández J, Rodríguez-Soria B, del Coz-Díaz JJ, Cano-Suñén E. Combined use of wind-driven rain and wind pressure to define water penetration risk into buildingfaçades: The Spanish case. Build Environ. 2013;64:46–56. https://doi.org/10.1016/j.buildenv.2013.03.004.
  • 9. Pérez-Bella JM, Domínguez-Hernández J, Rodríguez-Soria B, del Coz-Díaz JJ, Cano-Suñén E. Estimation of the exposure of buildings to driving rain in Spain from daily wind and rain data. Build Environ. 2012;57:259–70. https://doi.org/10.1016/j.buildenv.2012.05.010.
  • 10. Kubik J. Moisture flow in building materials (in Polish). Opole: Oficyna Wydawnicza Politechniki Opolskiej; 2000.
  • 11. Raimondo M, Dondi M, Guardini G, Mazzanti F. Predicting the initial rate of water absorption in clay bricks. Constr Build Mater.2009;23:2623–30. https://doi.org/10.1016/j.conbuildmat.2009.01.009.
  • 12. Espinosa RM, Franke L, Deckelmann G. Phase changes of saltsin porous materials. Crystallization, hydration and delique scence. Constr Build Mater. 2008;22:1758–73. https://doi.org/10.1016/J.CONBUILDMAT.2007.05.005.
  • 13. Gentilini C, Franzoni E, Brandini S, Nobile L. Effect of salt crystallization on the shear behavior of masonry walls: an experimental study. Constr Build Mater. 2012;37:181–9. https://doi.org/10.1016/j.conbuildmat.2012.07.086.
  • 14. Wołoch F, Gaczek M, Fiszer S. Impact of salt on building elements (in Polish) [PDF file], Builder 12 (2017), pp. 70-74. Accessed December 15, 2022. http://buildercorp.pl/wp-content/uploads/2017/12/70-74.pdf.
  • 15. Hoła A. Methodology for the in situ testing of the moisture content of brick walls: an example of application. Arch Civil Mech Eng.2020;20:237–49. https://doi.org/10.1007/s43452-020-00120-3.
  • 16. Morton LHG, Surman SB. Biofilms in biodeterioration – a review. Int Biodeterior Biodegrad. 1994;34(3–4):203–21. https://doi.org/10.1016/0964-8305(94)90083-3.
  • 17. Gaylarde C, Morton LHG. Deteriogenic biofilms on buildings and their control: a review. Biofouling. 1999;14(1):59–74. https://doi.org/10.1080/08927019909378397.
  • 18. Adamiak J, Bonifay V, Otlewska A, Sunner JA, Beech IB, Stryszewska T, Kańka S, Oracz J, Żyżelewicz D, Gutarowska B. Untar-geted metabolomics approach in halophiles: understanding the biodeterioration process of building materials. Front Microbiol.2017;8:2448. https://doi.org/10.3389/fmicb.2017.02448.
  • 19. Koniorczyk M, Gawin D, Schrefler B. Multiphysics for spalling prediction of brick due to in-pore salt crystallization. Comput Struct. 2018;196:233–45. https://doi.org/10.1016/j.compstruc.2017.10.013.
  • 20. Gawin D, Koniorczyk M, Pesavento F. Application of multiphase porous media mechanics for assessment of building materials durability, Sol Mech 2018: 41st Solid Mechanics Conference,27–31 August 2018, Warsaw, Poland. http://solmech2018.ippt.pan.pl/abstract_gawin-header.pdf.
  • 21. Ravaglioli A. Evaluation of frost resistance of pressed ceramicproducts based on the dimensional distribution of pores. Trans JBr Ceram Soc. 1976;76:92–5.
  • 22. Robinson GC. The relation between pore structure and durability of bricks. Bull Am Ceram Soc. 1984;63(2):295–300.
  • 23. Maage M. Frost resistance and pore size distribution in bricks. Mater Struct. 1984;17:345–50. https:// doi. org/ 10. 1007/ BF02478706.
  • 24. Bellanger M, Homand F, Remy JM. Water behavior in limestones as a function of pore structure: application to frost resistance of some Lorraine limestones. Eng Geol. 1993;36(1–2):99–108.https://doi.org/10.1016/0013-7952(93)90022-5.
  • 25. Scherer GW. Crystallisation in pores. Cement Concrete Res.1999;29(8):1347–58. https:// doi. org/ 10. 1016/ S0008- 8846(99)00002-2.
  • 26. Wesołowska M, Kaczmarek A, Hoła J. The influence of external environmental conditions on properties of ceramic building materials with waste material additives. Materials. 2021;14(11):2982.https://doi.org/10.3390/ma14112982.
  • 27. Cardiano P, Ioppolo S, De Stefano C, Pettignano A, Sergi S, Piraino P. Study and characterization of the ancient bricks of monastery of “San Filippo di Fragalà” in Frazzanò (Sicily). Anal Chim Acta. 2004;519(1):103–11. https://doi.org/10.1016/j.aca.2004.05.042.
  • 28. Sağın EU, Böke H. Characteristics of bricks used in the domes of some historic bath buildings. J Cultur Herit. 2013;14(3):e73–6.https://doi.org/10.1016/j.culher.2012.11.030.
  • 29. Rokiel M. Waterproofing in construction (in Polish). Warszawa: Grupa MEDIUM; 2006.
  • 30. Adamowski J, Hoła J, Matkowski Z. Probleme und Lösungenbeim Feuchtigkeitsschutz des Mauerwerks von Baudenkmälernam Beispiel zweier grosser Barockbauten in Wrocław. Bautechnik.2005;82:426–33. https://doi.org/10.1002/bate.200590148.
  • 31. European Standard, PN-EN 771-1+A1:2015-10. Specification formasonry units – Part 1: Specification for clay masonry units.
  • 32. European Standard, PN-EN 1996-2:2010. Eurocode 6: Design of masonry structures – Part 2: Design, selection of materials and execution of masonry.
  • 33. Vantadori S, Żak A, Sadowski Ł, Ronchei C, Scorza D, Zanichelli A, Viviani M. Microstructural, chemical and physical characterisation of the Shot-Earth 772. Constr Build Mater. 2022;341:127766. https://doi.org/10.1016/j.conbuildmat.2022.127766.
  • 34. Żak A, Wieczorek A, Chowaniec A, Sadowski Ł. Segmentation of pores in cementitious materials based on backscattered electron measurements: a new proposal of regression-based approach for thres hold estimation. Constr Build Mater. 2023;368: 130419.https://doi.org/10.1016/j.conbuildmat.2023.130419.
  • 35. Sadowski Ł, Stefaniuk D, Żak A, Krakowiak KJ. Micromechanical properties within the interphase between heterogeneous layers made of cementitious composites. Constr Build Mater.2019;215:1033–43. https://doi.org/10.1016/j.conbuildmat.2019.04.238.
  • 36. Sadowski Ł, Żak A, Hoła J. Multi-sensor evaluation of the concrete with in the interlayer bond with regard to pull-off adhesion. Arch Civil Mech Eng. 2018;18(2):573–82. https:// doi. org/ 10.1016/j.acme.2017.09.008.
  • 37. Micromeritics Application Note 20, Bulk and Skeletal Density Computations, Rev. 5/2012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd4ff2a5-b6c3-43d8-bebb-376a0f04e362
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.