PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transmission loss of absorptive mufflers lined with expanded clay granulates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of tests on sound attenuation by two types of cylindrical absorptive mufflers with the same length and different diameters of chambers filled with expanded clay granulates. Using a laboratory stand for testing acoustic mufflers with an impedance tube, the transmission loss parameter was determined. To compare the effectiveness of sound attenuation, the transmission loss of mufflers without sound absorbing material was also determined. The results of these tests were compared to the results obtained with the use of a known calculation model for reflective mufflers. Using an impedance tube, the normal incidence sound absorption coefficients of the expanded clay granulates with thicknesses of material samples from 10 to 100 mm were determined. The dependence between the sample thickness and the first resonance frequency of the sound absorption coefficient was determined, which was then used in the proposed calculation model of the effectiveness of the cylindrical absorptive mufflers with expanded clay granulates. Using the proposed theoretical model, the results of transmission loss calculations, satisfactory for engineering applications, were obtained.
Rocznik
Strony
art. no. 2022216
Opis fizyczny
Bibliogr. 21 poz., 1 fot. kolor., rys., wykr.
Twórcy
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków
Bibliografia
  • 1. I.L. Ver, L.L. Beranek; Noise and Vibration Control Engineering - Principles and Applications, 2nd ed.; John Wiley & Sons, Inc: Hoboken, New Jersey, 2006.
  • 2. Z. Engel, W.M. Zawieska; Noise and Vibrations in Work Processes. Sources, Assessment, Threats [in Polish]; CIOP-PIB: Warszawa, 2010.
  • 3. J. Sikora; Sound Absorbing and Insulating Enclosures. Basics of Design and Application [in Polish]; Wydawnictwa AGH: Kraków, 1981.
  • 4. H.G. Kil, K.H. Jeon, B.Y. Jang, C. Lee; Development of a perforated diffusive muffler for a regenerative blower; In: Proceedings of 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2018); SCITEPRESS - Science and Technology Publicaions, Lda; Porto, Portugal, 2018, 289-296. DOI: 10.5220/0006861502890296
  • 5. W.H. Tan, Z.M. Ripin; Anaysis of exhaust muffler with micro-perforated panel; J. Vibroengineering, 2013, 15(2), 558-573.
  • 6. B.K. Rakesh; A Review on current techniques for acoustic performance of an automobile exhaust muffler; In: ETMET - 2016 Conference Proceedings, International Journal of Engineering Research & Technology (IJERT), 2016, 31 (4), 1-7.
  • 7. C.H. Wu, C.N. Wang; Attenuation for the simple expansion chamber muffler with a right angle inlet; J. Mech., 2011, 27(3), 287-292. DOI: 10.1017/jmech.2011.19
  • 8. M.L. Munjal; Acoustics of Ducts and Mufflers, 2nd ed.; Wiley, 2014.
  • 9. R.F. Barron; Industrial Noise Control and Acoustics; Marcel Dekker, Inc.: New York, Basel, 2003.
  • 10. J.K. Lee, K.S. Oh, J.W. Lee; Methods for evaluating in-duct noise attenuation performance in a muffler design problem; J. Sound Vib., 2020, 464, 114982. DOI: 10.1016/j.jsv.2019.114982
  • 11. A. Snakowska, Ł. Gorazd, J. Jurkiewicz, K. Kolber; Generation of a single cylindrical duct mode using a mode synthesizer; Appl. Acoust., 2016, 114, 56-70. DOI: 10.1016/j.apacoust.2016.07.007
  • 12. Ł. Gorazd; Experimental determination of a reflective muffler scattering matrix for single-mode excitation; Arch. Acoust., 2021, 46(4), 667-675. DOI: 10.24425/aoa.2021.139643
  • 13. M. Ranjbar, M. Alinaghi; Effect of liner layer properties on noise transmission loss in absorptive mufflers; Mathematical Modelling and Applications, 2016, 1(2), 46-54. DOI: 10.11648/j.mma.20160102.13
  • 14. A.Y. Ismail, M.F. Chen, M.F. Azizi, M.A. Sis; Experimental investigation on the use of natural waste fibres as acoustic material of noise silencer; Journal of Advanced Research in Materials Science, 2016, 22, 1-10.
  • 15. J. Sikora, J. Turkiewicz; Experimental determination of sound absorbing coefficient for selected granular materials; Mechanics, 2009, 28 (1), 26-30.
  • 16. K. Kosała, J. Sikora; Possibilities of impact noise reduction in press; In: Proc. of 12th Noise Control, Kielce, Poland; 2001, 299-304.
  • 17. K. Kosała; Experimental tests of the acoustic properties of sound-absorbing linings and cores of layered baffles; Vib. Phys. Syst., 2021, 32(1), 2021107. DOI: 10.21008/j.0860-6897.2021.1.07
  • 18. E2611-19. Normal Incidence Determination of Porous Material Acoustical Properties Based on the Transfer Matrix Method. ASTM International: West Conshohocken, PA, 2019.
  • 19. ISO 11534-2. Acoustics - Determination of sound absorption coefficient and impedance in impedance tubes-Part 2 Transfer-function method. International Organization for Standardization (ISO): Geneva, Switzerland, 2001.
  • 20. C. Cempel; Applied Vibroacoustics [in Polish], 2nd ed.; PWN: Warszawa, 1989.
  • 21. F.A. Everest; A Handbook of Acoustics [in Polish]; Wydawnictwo Sonia Draga: Katowice, 2004, p. 219.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd4d675e-575e-4c3a-af73-c0d12f2d953a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.