PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of TiOF2/CuO particles via coprecipitation method and their further thermal transformation to F–TiO2/CuO

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a novel, low-cost and simple route for synthesis of TiOF2/CuO and F-TiO2/CuO out of fluoride solutions. The obtained materials after calcination can be used in various photocatalytic applications, e.g. in water treatment. It was demonstrated that control of synthesis process parameters, such as pH, allowed for synthesis of particles with different phase composition and properties. Thus, pH≤4 environment had created conditions for formation of two structures of TiOF2, hexagonal and cubic ones, as well as CuTiF6(H2O)4. Increase of Cu content promoted increase of the cubic c-TiOF2 phase. When the solutions exhibited pH>5, the synthesized particles consisted of (NH4)2TiF6·2H2O, (NH4)3TiF7, and (NH4)2СuF4·4H2O. Calcination above 300 °С provided formation of TiOF2/CuO particles, while elevated temperatures of 600 °С ensured appearance of F-TiO2/CuO material. It was found that higher copper concentrations resulted with higher fluoride percentage after calcination at 600 °С. It was also demonstrated that F-TiO2/CuO particles synthesized at рН≤4 exhibited energy band gap Eg of 3.3–3.25 eV, which decreased down to 2.85 eV for higher copper(II) oxide concentrations of 10 wt.%. Notably, the particles F-TiO2/CuO synthesized at pH>5 exhibited band gap Eg of 3.4–3.5 eV, which decreased down to 2.9 eV for higher CuO concentrations.
Rocznik
Strony
art. no. e68
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • National Academy of Sciences of Ukraine, Institute for Single Crystals, Prosp. Nauki, 60, Kharkiv 61178, Ukraine
  • Vilnius Gediminas Technical University, Sauletekio al. 11, LT–10223 Vilnius, Lithuania
  • National Academy of Sciences of Ukraine, State Scientific Institution, Institute for Single Crystals, Prosp. Nauki, 60, Kharkiv 61178, Ukraine
  • National Academy of Sciences of Ukraine, Institute for Single Crystals, Prosp. Nauki, 60, Kharkiv 61178, Ukraine
  • National Academy of Sciences of Ukraine, State Scientific Institution, Institute for Single Crystals, Prosp. Nauki, 60, Kharkiv 61178, Ukraine
  • Casimir Pulaski Radom University, Faculty of Mechanical Engineering, Stasieckiego Str. 51, 26-600 Radom, Poland
autor
  • Lublin University of Technology, Mechanical Engineering Faculty, Department of Production Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
  • The University College of Applied Sciences in Chełm, Institute of Technical Sciences and Aviation, ul. Pocztowa 54, Chełm 22–100, Poland
Bibliografia
  • 1. Abdalamir R.Q., Khodair Z.T., Abd A.N., 2022. Preparation and characterization of structural properties for TiO2 and CuO nanostructures by sol-gel technique. Mater. Today Proc., 57, 539–544. DOI: 10.1016/j.matpr.2022.01.417.
  • 2. Amaral R., Blois C., Lunz J., Mello A., Jardim P., 2022. Physical and optical properties of Ag3PO4 decorated TiO2 based nanostructures. J. Solid State Chem., 305, 122655. DOI: 10.1016/j.jssc.2021.122655.
  • 3. Ayati A., Ahmadpour A., Bamoharram F.F., Tanhaei B., Mänttäri M., Sillanpää M., 2014. A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere, 107, 163–174. DOI: 10.1016/j.chemosphere. 2014.01.040.
  • 4. Baig U., Dastageer M.A., Gondal M.A., Khalil A.B., 2023. Photocatalytic deactivation of sulphate reducing bacteria using visible light active CuO/TiO2 nanocomposite photocatalysts synthesized by ultrasonic processing. J. Photochem. Photobiol., B: Biol., 242, 112698. DOI: 10.1016/j.jphotobiol.2023.112698.
  • 5. Balaram V., Copia L., Kumar U.S., Miller J., Chidambaram S. 2023. Pollution of water resources and application of ICP-MS techniques for monitoring and management – a comprehen-sive review. Geosyst. Geoenviron., 2, 100210. DOI: 10.1016/j.geogeo.2023.100210.
  • 6. Banas-Gac J., Radecka M., Czapla A., Kusior E., Zakrzewska K., 2023. Surface and interface properties of TiO2/CuO thin film bilayers deposited by rf reactive magnetron sputtering. Appl. Surf. Sci., 616, 156394. DOI: 10.1016/j.apsusc.2023.156394.
  • 7. Castañeda C., Martínez J.J., Santos L., Rojas H., Osman S.M., Gómez R., Luque R., 2022. Caffeine photocatalytic degradation using composites of NiO/TiO2–F and CuO/TiO2–F under UV irradiation. Chemosphere, 288, 132506. DOI: 10.1016/j.chemosphere.2021.132506.
  • 8. Chaudhari P., Mishra S., 2016. Effect of CuO as a dopant in TiO2 on ammonia and hydrogen sulphide sensing at room temperature. Measurement, 90, 468–474. DOI: 10.1016/j.measurement. 2016.05.007.
  • 9. Choudhury P., Ghosh B., Lamba O.P., Bist H.D., 1983. Phase transitions in MnTiF6·6H2O and ZnTiF6·6H2O observed by IR spectroscopy. J. Phys. C: Solid State Phys., 16, 1609–1613. DOI: 10.1088/0022-3719/16/9/006.
  • 10. Chowdhury I.H., Ghosh S., Basak S., Naskar M.K., 2017. Mesoporous CuO–TiO2 microspheres for efficient catalytic oxidation of CO and photodegradation of methylene blue. J. Phys. Chem. Solids, 104, 103–110. DOI: 10.1016/j.jpcs.2017.01.010.
  • 11. Cotolan N., Rak M., Bele M., Cör A., Muresan L.M., Milošev I., 2016. Sol-gel synthesis, characterization and properties of TiO2 and Ag–TiO2 coatings on titanium substrate. Surf. Coat. Technol., 307, 790–799. DOI: 10.1016/j.surfcoat.2016.09.082.
  • 12. Cruz I.F., Freire C., Araújo J.P., Pereira C., Pereira A.M., 2018. Multifunctional ferrite nanoparticles: From current trends toward the future, In: El-Gendy A.A., Barandiarán J.M., Hadimani R.L. (Eds.), Micro and nano technologies, magnetic nanostructuredmaterials. Elsevier, Amsterdam, 59–116. DOI: 10.1016/B978-0- 12-813904-2.00003-6.
  • 13. Dembski S., Schneider C., Christ B., Retter M., 2018. Core-shell nanoparticles and their use for in vitro and in vivo diagnostics, In:
  • 14. Focarete M.L., Tampieri A. (Eds.), Core-shell nanostructures fo drug delivery and theranostics. Woodhead Publishing, Duxford 119–141. DOI: 10.1016/B978-0-08-102198-9.00005-3.
  • 15. Doebelin N., Kleeberg R., 2015. Profex: a graphical user interface for the Rietveld refinement program BGMN. J. Appl. Cryst., 48, 1573–1580. DOI: 10.1107/S1600576715014685.
  • 16. Dozzi M.V., D’Andrea C., Ohtani B., Valentini G., Selli E., 2013. Fluorine-doped TiO2 materials: Photocatalytic activity vs time-resolved photoluminescence. J. Phys. Chem. C, 117, 25586–25595. DOI: 10.1021/jp4095563.
  • 17. Edelmannová M., Lin K.-Y., Wu J.C.S., Troppová I., Čapek L., Kočí K., 2018. Photocatalytic hydrogenation and reduction of CO2 over CuO/TiO2 photocatalysts. Appl. Surf. Sci., 454, 313–318. DOI: 10.1016/j.apsusc.2018.05.123.
  • 18. Gao Y., Wang T., 2021. Preparation of Ag2O/TiO2 nanocomposites by two-step method and study of its degradation of RHB. J. Mol. Struct., 1224, 129049. DOI: 10.1016/j.molstruc. 2020.129049.
  • 19. Garg A., Singhania T., Singh A., Sharma S., Rani S., Neogy A., Yadav S.R., Sangal V.K., Garg N., 2019. Photocatalytic degradation of Bisphenol-A using N, Co ńodoped TiO2 ńatalyst under solar light. Sci. Rep., 9, 1–13. DOI: 10.1038/s41598-018- 38358-w.
  • 20. Guo L., Zhang X., Meng F., Yuan J., Zeng Y., Han C., Jia Y., Gu M., Zhang S., Zhong Q., 2023. Synergistic effect of F and triggered oxygen vacancies over F–TiO2 on enhancing NO ozonation. J. Environ. Sci., 125, 319–331. DOI: 10.1016/j.jes.2022.01.006.
  • 21. Gupta B., Melvin A.A., Matthews T., Dash S., Tyagi A.K., 2016. TiO2 modification by gold (Au) for photocatalytic hydrogen (H2 production. Renewable Sustainable Energy Rev., 58, 1366–1375. DOI: 10.1016/j.rser.2015.12.236.
  • 22. Hajipour P., Eslami A., Bahrami A., Hosseini-Abari A., Saber F.Y., Mohammadi R., Mehr M.Y., 2021. Surface modification of TiO2 nanoparticles with CuO for visible-light antibacterial applications and photocatalytic degradation of antibiotics. Ceram. Int., 47, 33875–33885. DOI: 10.1016/j.ceramint.2021.08.300
  • 23. Ibrahim N.S., Leaw W.L., Mohamad D., Alias S.H., Nur H., 2020. A critical review of metal-doped TiO2 and its structure-physical properties – photocatalytic activity relationship in hydrogen production. Int. J. Hydrogen Energy, 45, 28553–28565. DOI: 10.1016/j.ijhydene.2020.07.233.
  • 24. Jacob K.A., Peter P.M., Jose P.E., Balakrishnan C.J., Thomas V.J., 2022. A simple method for the synthesis of anatase- rutile mixed phase TiO2 using a convenient precursor and higher visible-light photocatalytic activity of Co–doped TiO2. Mater. Today Proc., 49, 1408–1417. DOI: 10.1016/j.matpr.2021.07.104.
  • 25. Janczarek M., Klapiszewski Ł., Jędrzejczak P., Klapiszewska I., Ślosarczyk A., Jesionowski T., 2022. Progress of functionalized TiO2-based nanomaterials in the construction industry: a comprehensive review. Chem. Eng. J., 430, 132062. DOI: 1016/j.cej.2021.132062.
  • 26. Kayani Z.N., Intizar T., Riaz S., Naseem S., 2021. Antibacterial, magnetic and dielectric properties of nano-structured V doped TiO2 thin films deposited by dip coating technique. Mater. Chem. Phys., 267, 124659. DOI: 10.1016/j.matchemphys.2021.124659.
  • 27. Lathe A., Palve A.M., 2023. A review: engineered nanomaterials for photoreduction of Cr(VI) to Cr(III). J. Hazard. Mater. Adv., 12, 100333. DOI: 10.1016/j.hazadv.2023.100333.
  • 28. Li D., Haneda H., Hishita S., Ohashi N., Labhsetwar N.K., 2005 Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J. Fluorine Chem., 126, 69–77. DOI: 10.1016/j.jfluchem.2004.10.044.
  • 29. Li F.-T., Liu R.-H., Zhao D.-S., Sun Z.-M., Qu Z.-M., 2007. Preparation and photocatalytic activity of nano–TiO2 codoped with fluorine and ferric. Trans. Nonferrous Met. Soc. China, 17, 713–715.
  • 30. Liang Z., Ouyang B., Wang T., Liu X., Huo H., Liu D., Feng H. Ma J., Deng K., Li A., Kan E., 2022. Pt modified TiO2/NiO p-n junction with enhanced surface reaction and charge separation for efficient photocatalytic hydrogen evolution. Int. J. Hydrogen Energy, 47, 10868–10876. DOI: 10.1016/j.ijhydene.2022.01.140.
  • 31. Lin C.-J., Yang W.-T., 2014. Ordered mesostructured Cu-doped TiO2 spheres as active visible-light-driven photocatalysts for degradation of paracetamol. Chem. Eng. J., 237, 131–137. DOI: 10.1016/j.cej.2013.10.027.
  • 32. Miklos D.B., Remy C., Jekel M., Linden K.G., Drewes J.E., Hübner U., 2018. Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review. Water Res., 139, 118–131. DOI: 10.1016/j.watres.2018.03.042.
  • 33. Mittal A., Brajpuriya R., Gupta R., 2023. Solar steam generation using hybrid nanomaterials to address global environmental pollution and water shortage crisis. Mater. Today Sustainability, 21, 100319. DOI: 10.1016/j.mtsust.2023.100319.
  • 34. Mohamed R.M., Kadi M.W., Ismail A.A., 2020. A Facile synthesis of mesoporous ¸-Fe2O3/TiO2 nanocomposites for hydrogen evolution under visible light. Ceram. Int., 46, 15604–15612. DOI: 10.1016/j.ceramint.2020.03.107.
  • 35. Moridon S.N.F., Arifin K., Yunus R.M., Minggu L.J., Kassim M.B., 2022. Photocatalytic water splitting performance of TiO2 sensitized by metal chalcogenides: a review. Ceram. Int., 48, 5892–5907. DOI: 10.1016/j.ceramint.2021.11.199.
  • 36. Núñez-Delgado A., Álvarez-Rodríguez E., Fernández-Sanjurjo M.J., Arias-Estévez M., Fernández-Calviño D., López-Ramón M.V., Sánchez-Polo M., 2023. Low-cost materials to face soil and water pollution. Curr. Opin. Environ. Sci. Health, 32, 100453. DOI: 10.1016/j.coesh.2023.100453.
  • 37. Nyquist R.A., Kagel R.O., 1971. Infrared spectra of inorganic compounds (3800–45 cm−1). Academic Press, New York and London.
  • 38. Park H, Choi W., 2004. Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. J. Phys. Chem. B, 108, 4086–4093. DOI: 10.1021/jp036735i.
  • 39. Poblete R., Cortes E., Salihoglu G., Salihoglu N.K., 2020. Ultrasound and heterogeneous photocatalysis for the treatment o vinasse from pisco production. Ultrason. Sonochem., 61, 104825. DOI: 10.1016/j.ultsonch.2019.104825.
  • 40. Riaz S., Park S.-J., 2020. An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments. J. Ind. Eng. Chem., 84, 23–41. DOI: 10.1016/j.jiec.2019.12.021.
  • 41. Rueda-Marquez J.J., Levchuk I., Ibañez P.F., Sillanpää M., 2020. A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod., 258, 120694. DOI: 10.1016/j.jclepro.2020.120694.
  • 42. Shian S., Sandhage K.H., 2010. Hexagonal and cubic TiOF2. J. Appl. Crystallogr., 43, 757–761. DOI: 10.1107/S0021889810016730.
  • 43. Siva Prasanna S.R.V., Balaji K., Pandey S., Rana S., 2019 Chapter 4 - Metal oxide based nanomaterials and their polymer nanocomposites, In: Karak N. (Ed.), Nanomaterials and polymer nanocomposites. Elsevier, Amsterdam, 123–144. DOI: 10.1016/B978-0-12-814615-6.00004-7.
  • 44. Sofronov D., Rucki M., Doroshenko A., Shaposhnyk A., Kapustnik O., Mateychenko P., Baumer V., Zurowski W., 2022. Synthesis of TiO2 nanoparticles out of fluoride solutions. J. Mater. Res. Technol., 17, 2267–2279. DOI: 10.1016/j.jmrt.2022.02.002.
  • 45. Sofronov D.S., Lebedynskiy O.M., Rucki M., Mateychenko P.V., Minenko S.S., Shaposhnyk A.M., Krzysiak Z., 2023. A novel method of TiOF2 particles synthesis out of fluoride solutions. J. Alloys Compd., 966, 171646. DOI: 10.1016/j.jallcom.2023.171646.
  • 46. Szczepanik B., 2017. Photocatalytic degradation of organic contaminants over clay–TiO2 nanocomposites: a review. Appl. Clay Sci., 141, 227–239. DOI: 10.1016/j.clay.2017.02.029.
  • 47. Tatarchuk T., Peter A., Al-Najar B., Vijaya L.J., Bououdina M., 2018. Photocatalysis: Activity of nanomaterials, In Hussain C.M., Mishra A.K. (Eds.), Nanotechnology in environmental science. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 209–292. DOI: 10.1002/9783527808854.ch8.
  • 48. Todorova N., Giannakopoulou T., Romanos G., Vaimakis T., Yu J., Trapalis C., 2008. Preparation of fluorine-doped TiO2 photocatalysts with controlled crystalline structure. Int. J. Pho- toenergy, 2008, 534038. DOI: 10.1155/2008/534038.
  • 49. Wang J., Cao F., Bian Z., Leung M.K.H., Li H., 2014. Ultrafine single-crystal TiOF2 nanocubes with mesoporous structure, high activity and durability in visible light driven photocatalysis. Nanoscale, 6, 897–902. DOI: 10.1039/C3NR04489K.
  • 50. Wang X., Li S., Chen P., Li F., Hu X., Hua T., 2022a. Pho- tocatalytic and antifouling properties of TiO2-based photocatalytic membranes. Mater. Today Chem., 23, 100650. DOI: 10.1016/j.mtchem.2021.100650.
  • 51. Wang Y., Gao P., Li B., Yin Z., Feng L., Liu Y., Du Z., Zhang L., 2022b. Enhanced photocatalytic performance of visible-light-driven CuOx /TiO2−x for degradation of gaseous formaldehyde: roles of oxygen vacancies and nano copper oxides. Chemosphere, 291, 133007. DOI: 10.1016/j.chemosphere.2021.133007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd4c0ec7-b803-47cd-adae-65f6d332a623
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.