PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Remarks about discrete Young measures and their Monte Carlo simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article is devoted to the problem of simulation of random variables distributed according to Young measures associated with piecewise affine functions determined on bounded intervals. We start with simple functions which can take on a finite number of different values with inverse images being the intervals or their unions. We present some formal results connected with related discrete Young measures and propose an algorithm for generating random variables having such distributions. Next, based on these results we introduce an algorithm designed for approximation of Young measures in various, more general situations. We also present an example where a Young measure associated with a piecewise affine function is approximated with the help of computer simulations. In this benchmarking problem the theoretical results are compared with the ones obtained in the Monte Carlo experiment.
Rocznik
Strony
13--20
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
  • Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
autor
  • Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
Bibliografia
  • [1] Young L.C., Generalized curves and the existence of an attained absolute minimum in the calculus of variations, Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, classe III, 1937, 212-234.
  • [2] Puchała P., An elementary method of calculating an explicit form of Young measures in some special cases, Optimization 2014, 63, 9, 1419-1430.
  • [3] Bielski W., Kruglenko E., Telega J.J., Miary Younga i ich zastosowania w mikromechanice i optymalizacji. Część I. Podstawy matematyczne, Matematyka Stosowana 2003, 4, 90-138.
  • [4] Nicolaides R.A., Walkington N.J., Computation of microstructure utilizing Young measure representations, J. Intelligent Materials Systems and Structures 1993, 4, 795-800.
  • [5] Spall J.C., Introduction to Stochastic Search and Optimization; Estimation, Simulation, and Control, A John Wiley & Sons. Inc. Publication, 2003.
  • [6] Grzybowski A.Z., Simulation approach to optimal stopping in some blackjack type problems, Scientific Research of the Institute of Mathematics and Computer Science 2011, 10, 2, 75-86.
  • [7] Bartłomiejczyk K., Chain-like structures' motion - metamodeling of the translocation time in some specific situations, Journal of Applied Mathematics and Computational Mechanics 2014, 13, 3, 5-12.
  • [8] Pedregal P., Variational Methods in Nonlinear Elasticity, SIAM, Philadelphia 2000.
  • [9] Roubíček T., Relaxation in Optimization Theory and Variational Calculus, Walter de Gruyter, Berlin, New York 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd4b2247-52df-4326-9e67-0a8d4baeb6a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.