PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The method of determining PEMFC fuel cell stack performance decrease rate based on the voltage-current charact eristic shift

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Metoda wyznaczania szybkości spadku wydajności stosu ogniw paliwowych typu PEMFC na podstawie przesunięcia charakterystyki napięciowo-prądowej
Języki publikacji
EN PL
Abstrakty
EN
The article presents mathematical model designed to estimate the rate of performance decrease in fuel cell stack. The fuel cell stack performance decrease rate is determined on the basis of stack average voltage measurements. The proposed model is used to determine power curve as well as exploitation indicators of fuel cell stack with a nominal power of 50 kW after 14 000 hours of continuous operation. The model is also used to determine the average voltage drop for the eleven-year fuel cell stack with a nominal power of 1,2 kW. In both studies, the values of exploitation indicators as well as their differences in relation to nominal values are determined.
PL
Artykuł przedstawia model matematyczny przeznaczony do wyznaczenia szybkości spadku wydajności stosu ogniw paliwowych. Szybkość spadku wydajności stosu ogniw jest wyznaczana na podstawie wartości napięcia średniego stosu. Zaproponowany model wykorzystano do wyznaczenia krzywej mocy i wskaźników eksploatacyjnych stosu ogniw paliwowych o mocy nominalnej 50 kW po 14 000 h ciągłej pracy. Model wykorzystano także do wyznaczenia szybkości zmiany wartości napięcia średniego jedenastoletniego stosu ogniw paliwowych o mocy 1,2 kW. W obu badaniach wyznaczono wartości wskaźników eksploatacyjnych oraz ich różnice względem wielkości nominalnych.
Rocznik
Strony
530--535
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Faculty of Environmental Engineering and Energy Poznan University of Technology ul. Piotrowo 3a, 60-965 Poznań, Poland
  • Faculty of Environmental Engineering and Energy Poznan University of Technology ul. Piotrowo 3a, 60-965 Poznań, Poland
  • Faculty of Mechanical and Power Engineering Wrocław University of Science and Technology ul. C.K. Norwida 1/3, 50-370 Wrocław, Poland
Bibliografia
  • 1. Abdelnasir O, Smith D, Alaswad A, Amiri A, Sodre JR, Lucchesi A. Proton-exchange membrane (PEM) fuel cell system mathematical modelling. Paper presented at SDEWES - 14th Conference on Sustainable Development of Energy, 2019; Water and Environment Systems, Dubrovnik, Croatia.
  • 2. Abdul Rasheed RK, Liao Q, Caizhi Z, Chan SH. A review on modelling of high temperature proton exchange membrane fuel cells (HTPEMFCs). International Journal of Hydrogen Energy 2017; 42(5): 3142-3165, https://doi.org/10.1016/j.ijhydene.2016.10.078.
  • 3. Álvarez Fernández R, Corbera Caraballo S, Beltrán Cilleruelo F, Lozano JA. Fuel optimization strategy for hydrogen fuel cell range extender vehicles applying genetic algorithms. Renewable and Sustainable Energy Reviews 2018; 81(1): 655-668, https://doi.org/10.1016/j.rser.2017.08.047.
  • 4. Atyabi SA, Afshari E, Wongwises S, Yan WM, Hadjadj A, Shadloo MS. Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances. Energy 2019; 179: 490-501, https://doi.org/10.1016/j.energy.2019.05.031.
  • 5. Barbir F. PEM Fuel Cell: Theory and Practice. New York: Elsevier Academic Press, 2005, 99-113.
  • 6. Cao Y, Li Y, Zhang G, Jermsittiparsert K, Razmjooy N. Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm. Energy Reports 2019; 5: 1616-1625, https://doi.org/10.1016/j.egyr.2019.11.013.
  • 7. Ceran B, Bernstein P.A. Operational characteristics of proton exchange membrane (PEM) fuel cells, Przegląd Elektrotechniczny 2014, 10:102 - 105, 2014.
  • 8. Ceran B, Długosz J, Kruczek-Pawlak H. Analiza energetyczna stosu ogniw paliwowych z jonowymienna membrana polimerowa PEMFC, Poznań University of Technology Academic Journals, 2016; 86: 301-312.
  • 9. Ceran B, Orłowska A. The Impact of Power Source Performance Decrease in a PV/WT/FC Hybrid Power Generation System on the Result of a Multi-Criteria Analysis of Load Distribution. Energies 2019; 12(18): 3453, https://doi.org/10.3390/en12183453.
  • 10. Ceran B. Charakterystyki eksploatacyjne stosu ogniw paliwowych typu PEMFC. Polityka Energetyczna - Energy Policy Journal 2014;17(3): 135-146.
  • 11. Chandrasekar C, Amruth Kumar L. A Novel Approach on Range Prediction of a Hydrogen Fuel Cell Electric Truck. SAE Technical Paper 2019; 2019-28-2514, https://doi.org/10.4271/2019-28-2514.
  • 12. Chmielniak T, Lepszy S, Mońka P. Energetyka wodorowa - podstawowe problemy. Polityka Energetyczna - Energy Policy Journal 2017;20(3): 55-66.
  • 13. Dudek M, Celowski P, Lis B, Raźniak A, Dudek P. Laboratoryjny generator energii elektrycznej o mocy 360 W zawierający niskotemperaturowy stos ogniw paliwowych PEMFC chłodzony za pomocą medium ciekłego. Przegląd Elektrotechniczny 2016, 10: 235 - 242, 2014, https://doi.org/10.15199/48.2016.10.54.
  • 14. Gharehpetian GB, Mohammad Mousavi Agah S. Distributed Generation Systems. Design, Operation and Grid Integration. Butterworth-Heinemann. An imprint of Elsevier, 2017, https://doi.org/10.1016/B978-0-12-804208-3.09993-3.
  • 15. Guo X, Zhang H, Wang J, Zhao J, Wang F, Miao H, Yuan J, Hou S. A new hybrid system composed of high-temperature proton exchange fuel cell and two-stage thermoelectric generator with Thomson effect: Energy and exergy analyses. Energy 2020; 195: 117000, https://doi.org/10.1016/j.energy.2020.117000.
  • 16. Hosseinalizadeh R, Shakouri GH, Amalnick MS, Taghipour P. Economic sizing of a hybrid (PV-WT-FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: Case study of Iran. Renewable and Sustainable Energy Reviews 2016; 54: 139-150, https://doi.org/10.1016/j.rser.2015.09.046.
  • 17. Kabza A. Fuel Cell Formulary, www.kabza.de, dostęp: 31.03.2020.
  • 18. Keršys A, Kalisinskas D, Pukalskas S, Vilkauskas A, Keršys R, Makaras R. Investigation of the influence of hydrogen used in internal combustion engines on exhaust emission. Eksploatacja I Niezawodnosc - Maintenance and Reliability 2013; 15 (4): 384-389.
  • 19. Khan A, Javaid N. Optimum Sizing of PV-WT-FC-DG Hybrid Energy System using Teaching Learning-Based Optimization. International Conference on Frontiers of Information Technology (FIT) Islamabad, Pakistan, 2019; 1270-1275, https://doi.org/10.1109/FIT47737.2019.00033
  • 20. Kruczyński S, Śleżak M, Gis W, Orliński P. Evaluation of the impact of combustion hydrogen addition on operating properties of selfignition engine. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2016; 18 (3): 343-347, https://doi.org/10.17531/ein.2016.3.4.
  • 21. Mayur M, Gerard M, Schott P, Bessler WG. Lifetime Prediction of a Polymer Electrolyte Membrane Fuel Cell under Automotive Load Cycling Using a Physically-Based Catalyst Degradation Model. Energies 2018; 11: 2054, https://doi.org/10.3390/en11082054.
  • 22. O'Hayre R, Cha SW, Colella W, Prinz FB. Fuel Cell Fundamentals, 3rd Edition, Wiley 2016, https://doi.org/10.1002/9781119191766.
  • 23. Park J, Oh H, Ha T, Lee YI, Min K. A review of the gas diffusion layer in proton exchange membrane fuel cells: Durability and degradation. Applied Energy 2015; 155: 866-880, https://doi.org/10.1016/j.apenergy.2015.06.068.
  • 24. Paska J. Chosen aspects of electric power system reliability optimization. Eksploatacja I Niezawodnosc - Maintenance and Reliability 2013;15 (2): 202-208.
  • 25. Placca L, Kouta R. Fault tree analysis for PEM fuel cell degradation process modelling. International Journal of Hydrogen Energy 2011;36(19): 12393-12405, https://doi.org/10.1016/j.ijhydene.2011.06.093.
  • 26. Qiu D, Peng L, Liang P, Yi P, Lai X. Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells. Energy 2018; 165: 210-222, https://doi.org/10.1016/j.energy.2018.09.136.
  • 27. Secanell M, Jarauta A, Kosakian A, Sabharwal M, Zhou J. PEM Fuel Cells, Modeling. 2017; Springer, New York, NY, https://doi.org/10.1007/978-1-4939-2493-6_1019-1.
  • 28. Shayeghi H, Shahryari E, Moradzadeh M, Siano P. A Survey on Microgrid Energy Management Considering Flexible Energy Sources. Energies 2019; 12(11): 2156, https://doi.org/10.3390/en12112156.
  • 29. Sprik S, Thornton MJ, Brooks K, Tamburello DA. Performance Modeling of Materials-Based Hydrogen Storage Systems for Automotive Applications. 2017 AIChE Annual Meeting, 29 October - 3 November 2017, Minneapolis, Minnesota.
  • 30. Sroka ZJ. Durability of engine components due to alternative fuels. Eksploatacja I Niezawodnosc - Maintenance and Reliability 2007; 4(36): 9-15.
  • 31. Thangavelautham J. Degradation in PEM fuel cells and mitigation strategies using system design and control. T. Taner (Ed.), Proton Exchange Membrane Fuel Cell, London: Intech Open Ltd, 2018: 63-95, https://doi.org/10.5772/intechopen.72208
  • 32. Vasilyev A, Andrews J, Jackson LM, Dunnett SJ, Davies B. Component-based modelling of PEM fuel cells with bond graphs. International Journal of Hydrogen Energy 2017; 42; 29406-29421, https://doi.org/10.1016/j.ijhydene.2017.09.004.
  • 33. Verhage A, Gerits J, Manders T. Duration Tests of PEM Fuel Cells in a 50 kW Pilot Power Plant. In Proceedings of the 18th World Hydrogen Energy Conference (WHEC), Essen, Germany, 2010; 16-20 May: 63-67.
  • 34. Wu H-W. A review of recent development: Transport and performance modeling of PEM fuel cells. Applied Energy 2016; 165: 81-106, https://doi.org/10.1016/j.apenergy.2015.12.075.
  • 35. Zhou D, Wu Y, Gao F, Breaz E, Ravey A, Miraoui A. Degradation Prediction of PEM Fuel Cell Stack Based on Multiphysical Aging Model With Particle Filter Approach. IEEE Transactions on Industry Applications 2017; (53)4: 4041-4052, https://doi.org/10.1109/TIA.2017.2680406.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd468fbb-88ed-44f4-8061-7f0f6a39365f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.