PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Extensions of Pontryagin hypergroups

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to investigate the extension problem for the category of commutative hypergroups. In fact, by applying the new notion of a field of compact subhypergroups, sufficiently many extensions can be established, and among them splitting extensions can be characterized. Moreover, the duality of extensions will be studied via duality of fields of hypergroups. The method of extension via fields of hypergroups yields the construction of Pontryagin hypergroups which do not arise from group-theoretic objects.
Słowa kluczowe
Rocznik
Strony
245--260
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Universität Tübingen, Mathematisches Institut, Auf der Morgenstelle 10, 72076, Tübingen, Germany
autor
  • Nara University of Education, Department of Mathematics, Takabatake-cho, Nara, 630-8528, Japan
Bibliografia
  • [1] W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Stud. Math. 20 (1995).
  • [2] C. F. Dunkl and D. E. Ramirez, A family of compact P*-hypergroups, Trans. Amer. Math. Soc. 202 (1975), pp. 339-356.
  • [3] J. J. F. Fournier and K. A. Ross, Random Fourier series on compact abelian hypergroups, J. Aust. Math. Soc. Ser. A 37 (1) (1984), pp. 45-81.
  • [4] P. Hermann and M. Voit, Induced representation and duality results for commutative hypergroups, Forum Math. 7 (1995), pp. 543-558.
  • [5] H. Heyer, T. Jimbo, S. Kawakami and K. Kawasaki, Finite commutative hypergroups associated with actions of finite abelian groups, Bull. Nara Univ. Ed. 54 (2) (2005), pp. 23-29.
  • [6] H. Heyer, Y. Katayama, S. Kawakami and K. Kawasaki Extensions of finite commutative hypergroups, preprint.
  • [7] R. I. Jewett, Spaces with an abstract convolution of measures, Adv. Math. 18 (1) (1975), pp. 1-101.
  • [8] S. Kawakami and W. Ito, Crossed products of commutative finite hypergroups, Bull. Nara Univ. Ed. 48 (2) (1999), pp. 1-6.
  • [9] K. A. Ross, Centers of hypergroups, Trans. Amer. Math. Soc. 243 (1978), pp. 251-269.
  • [10] K. Urbanik, Generalized convolutions, Studia Math. 23 (1964), pp. 217-245.
  • [11] M. Voit, Projective and inductive limits of hypergroups, Proc. London Math. Soc. 67 (1993), pp. 617-648.
  • [12] M. Voit, Substitution of open subhypergroups, Hokkaido Math. J. 23 (1994), pp. 143-183.
  • [13] R. C. Vrem, Connectivity and supernormality results for hypergroups, Math. Z. 195 (3) (1987), pp. 419-428.
  • [14] R. C. Vrem, Hypergroup joins and their dual objects, Pacific J. Math. 111 (2) (1989), pp. 483-495.
  • [15] N. J. Wildberger, Finite commutative hypergroups and applications from group theory to conformal field theory, in: Applications of Hypergroups and Related Measure Algebras, Amer. Math. Soc., Providence 1994, pp. 413-434.
  • [16] Hm. Zeūner, Duality of commutative hypergroups, in: Probability Measures on Groups, X. H. Heyer (Ed.), Plenum Press, New York-London 1991, pp. 467-488.
Uwagi
To the memory of Professor Kazimierz Urbanik.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd430c49-6dbf-44b7-9237-2961b338c2f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.