PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermally Induced Polymorphic Transformation of Hexanitrohexaazaisowurtzitane (HNIW) Investigated by in-situ X-ray Powder Diffraction

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ε→γ phase transition of HNIW induced by heat was investigated with in situ X-ray powder diffraction (PXRD). The effects of purity, particle size, insensitive additives and the time of isothermal heat treatment on the phase transition were evaluated. It was found that the phase transition is irreversible with changes in temperature, and the two phases can coexist in a certain temperature range. Moreover, the initial phase transition temperature increases with increasing purity and decreasing particle size of HNIW, and thus with the approximate crystal density. The addition of graphite and paraffin wax to HNIW as insensitive additives leads to a decrease in the initial phase transition temperature, but the addition of TATB does not affect the initial phase transition temperature. Thus, TATB is a suitable insensitive additive. Moreover, at the critical temperature, the isothermal time determined the efficiency of the ε- to γ-phase transition. This work lays the foundations for the choice of molding technologies, performance test methods, ammunition storage options, as well as the manufacture of HNIW-based explosive formulations.
Rocznik
Strony
1023--1037
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People’s Republic of China
  • Insitute of Chemical Materials, Chinese Academy of Engineering Physics (CAEP), Mianyang 621900, People’s Republic of China
autor
  • Insitute of Chemical Materials, Chinese Academy of Engineering Physics (CAEP), Mianyang 621900, People’s Republic of China
autor
  • School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People’s Republic of China
autor
  • Insitute of Chemical Materials, Chinese Academy of Engineering Physics (CAEP), Mianyang 621900, People’s Republic of China
autor
  • Insitute of Chemical Materials, Chinese Academy of Engineering Physics (CAEP), Mianyang 621900, People’s Republic of China
autor
  • Insitute of Chemical Materials, Chinese Academy of Engineering Physics (CAEP), Mianyang 621900, People’s Republic of China
Bibliografia
  • [1] Bernstein J., Polymorphism in Molecular Crystals, Oxford University Press, 2008; ISBN 978-0-19-850605-8.
  • [2] Blagden N., Davey R.J., Polymorph Selection: Challenges for the Future?, Cryst. Growth Des., 2003, 3(6), 873-885.
  • [3] Xu J., Sun J., Zhou K., Shu Y., Review on Polymorphic Transformation of CL-20 in Recrystallization, Chin. J. Energ. Mater., 2012, 20(2), 248-255.
  • [4] Xu J., Tian Y., Liu Y., Zhang H., Shu Y., Sun J., Polymorphism in Hexanitrohexaazaisowurtzitane Crystallized from Solution, J. Cryst. Growth, 2012, 354, 13-19.
  • [5] Russell T., Miller P., Piermarini G., Block S., Pressure/Temperature Phase Diagram of Hexanitrohexaazaisowurtzitane, J. Phys. Chem., 1993, 97(9), 1993-1997.
  • [6] Zhang P., Xu J., Guo X., Jiao Q., Zhang J., Effect of Additives on Polymorphic Transition of ε-CL-20 in Castable Systems, J. Therm. Anal. Calorim., 2014, 117, 1001-1008.
  • [7] Xu J., Pu L., Liu Y., Sun J., Jiao Q., Guo X., Liu X., Polymorphic Transformation of ε-CL-20 in Different HTPB-based Composite Systems, Chin. J. Energ. Mater. (Hanneng Cailiao), 2015, 23(2), 113-119.
  • [8] Nielsen A.T., Chan M.L., Kraeutle C.K., Polynitropolyazacaged Explosives, Part 7. NWC TP 7200[R], China Lake: Naval Weapons Center, 1989.
  • [9] Nielsen A.T., Caged Polynitramine Compound, Patent US 5693794, 1997.
  • [10] Foltz M.F., Coon C.L., Garcia F., Nichols A.L., The Thermal Stability of the Polymorphs of Hexanitrohexaazaisowurtzitane, Part I, Propellants Explos. Pyrotech., 1994, 19(1), 19-25.
  • [11] Foltz M.F, Coon C.L, Garcia F., Nichols A.L., The Thermal Stability of the Polymorphs of Hexanitrohexaazaisowurtzitane, Part II, Propellants Explos. Pyrotech., 1994, 19(3), 133-144.
  • [12] Russell T., Miller P., Piermarini G., Nichols A.L., Block S., High-pressure Phase Transition in γ-Hexanitrohexaazaisowurtzitane, J. Phys. Chem., 1992, 96(13), 5509-5512.
  • [13] Millar D.I.A., Maynard-Casely H.E., Kleppe A.K., Marshall W.G., Pulham C.R., Cumming A.S., Putting the Squeeze on Energetic Materials-Structural Characterization of a High-pressure Phase of CL-20, CrystEngComm, 2010, 12(9), 2524-2527.
  • [14] Ciezak J.A., Jenkins T.A., Liu Z., Evidence for a High-pressure Phase Transition of ε-2,4,6,8,10,12-Hexanitrohexaazaisowurtzitane (CL-20) Using Vibrational Spectroscopy, Propellants Explos. Pyrotech., 2007, 32(6), 472-477.
  • [15] Xu X., Zhu W., Xiao H., DFT Studies on the Four Polymorphs of Crystalline CL-20 and the Influences of Hydrostatic Pressure on ε-CL-20 Crystal, J. Phys. Chem. B, 2007, 111, 2090-2097.
  • [16] Jin S., Shu Q., Chen S., Shi Y., Preparation of ε-HNIW by a One-pot Method in Concentrated Nitric Acid from Tetraacetyldiformylhexaazaisowurzitane, Propellants Explos. Pyrotech., 2007, 32(6), 468-471.
  • [17] Braithwaite P.C., Hatch R.L., Lee K., Wardle R.B., Mezger M., Nicolich S., Development of High Performance CL-20 Explosive Formulations, 29th Int. Annu. Conf. ICT, Karlsruhe, 1998, 4:1-5.
  • [18] Bazaki H., Kawabe S., Miya H., Synthesis and Sensitivity of Hexanitrohexaazaisowurtzitane (HNIW), Propellants Explos. Pyrotech., 1998, 23(6), 333-336.
  • [19] Lee M.H., Kim J.H., Park Y.C., Hwang J.H., Kim W.S., Control of Crystal Density of ε-Hexanitrohexaazaisowurzitane in Evaporation Crystallization, Ind. Eng. Chem. Res., 2007, 46, 1500-1504.
  • [20] Löbbecke S., Bohn M.A., Pfeil A., Krause H., Thermal Behavior and Stability of HNIW (CL-20), 29th Int. Annu. Conf. ICT, Karlsruhe, 1998, 145, 1-15.
  • [21] Turcotte R., Vachon M., Kwok Q.S.M., Wang R., Jones D.E., Thermal Study of HNIW (CL-20), Thermochim. Acta, 2005, 433, 105-115.
  • [22] Thiboutot S., Brousseau P., Ampleman G., Pantea D., Cote S., Potential Use of CL-20 in TNT/ETPE-based Melt Cast Formulation, Propellants Explos. Pyrotech., 2008, 33(2), 103-108.
  • [23] Hoffman D.M., Voids and Density Distributions in 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-Hexaazaisowurtzitane (CL-20) Prepared under Various Conditions, Propellants Explos. Pyrotech., 2003, 28, 194-200.
  • [24] Sun J., Shu X., Liu Y., Zhang H., Liu X., Jiang Y., Kang B., Xue C., Song G., Investigation on the Thermal Expansion and Theoretical Density of 1,3,5-Trinitro-1,3,5-triazacyclohexane, Propellants Explos. Pyrotech., 2011, 36, 341-346.
  • [25] Mittemeijer E.J., Welzel U., Modern Diffraction Methods, John Wiley & Sons, 2013; ISBN 978-3-527-32279-4.
  • [26] Young R.A., The Rietveld Method, Oxford University Press, Oxford, 2002; ISBN 0-19-855912-7.
  • [27] Nielsen A.T., Chafin A.P., Christian S.L., Moore D.W., Nadler M.P., Nissan R.A., Vanderah D.J., Gilardi R.D., George C.F., Flippen-Anderson J.L., Synthesis of Polyazapolycyclic Caged Polynitramines, Tetrahedron, 1998, 54, 11793-11812.
  • [28] Cambridge Structure Database search, CSD Version 5.32, May 2011 update, Cambridge Crystallographic Data Centre, UK; www.ccdc.cam.ac.uk.
  • [29] TOPAS V3.0: General Profile and Structure Analysis Software for Powder Diffraction Data, Bruker AXS GmbH, Karlsruhe, 2000.
  • [30] Hugo M.R., The Rietveld Method (invited comment), Phys. Scr., 2014, 89, 1-6.
  • [31] Hutton A.C., Mandile A.J., Quantitative XRD Measurement of Mineral Matter in Gondwana Coals Using the Rietveld Method, J. Afr. Earth Sci., 1996, 23(1), 61-72.
  • [32] Zhang Z., Jiang C., Fu P., Cai F., Ma N., Microstructure and Texture of Electrodeposited Ni-ZrC Composite Coatings Investigated by Rietveld XRD Line Profile Analysis, J. Alloys Compd., 2015, 626, 118-123.
  • [33] Räth S., Woodall L., Deroche C., Seipel B., Schwaigerer F., Schmahl W.W., Quantitative Phase Analysis of PBSCCO 2223 Precursor Powders − an XRD/Rietveld Refinement Study, Supercond. Sci. Technol., 2002, 15, 543-554.
  • [34] Langer G., Eisenreich N., Hot Spots in Energetic Materials, Propellants Explos. Pyrotech., 1999, 24, 113-118.
  • [35] Bellamy A.J., A Simple Method for the Purification of Crude Hexanitrohexaazaisowurtzitane (HNIW or CL-20), Propellants Explos. Pyrotech., 2003, 28, 145-151.
  • [36] Diao Y., Allan S.M., Hatton T.A., Trout B.L., Surface Design for Controlled Crystallization: the Role of Surface Chemistry and Nanoscale Pores in Heterogeneous Nucleation, Langmuir, 2011, 27, 5324-5334.
  • [37] Hu Q., Lu Z., Study of Desensitizing Effect of TATB, Wax and Graphite, Chin. J. Energ. Mater., 2004, 12(1), 26-29.
  • [38] Zhang C., Wang X., Huang H., π-Stacked Interactions in Explosive Crystals: Buffers Against External Mechanical Stimuli, J. Am. Chem. Soc., 2008, 130(26), 8359-8365.
  • [39] Li J., Brill T.B., Kinetics of Solid Polymorphic Phase Transitions of CL-20, Propellants Explos. Pyrotech., 2007, 32(4), 326-330.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd3de065-292f-4e6e-8792-ee7431d9a211
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.