PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Computational investigation of vibration characteristics analysis for industrial rotor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During the operation of a rotor, various types of vibrations appear in this mechanical system and often limit the performance and endanger the safety of the operation. Therefore, dynamic analysis is essential because precise knowledge of the vibration behaviour is essential to ensure proper operation. This article presents a set of scientific techniques for the modelling and simulation of rotor vibrations. To work out the equations of the vibratory movement of the rotor, we used the energy approach of Lagrange. To achieve this, a model with one blading wheel carried by a shaft supported by two hydrodynamic bearings is chosen basedon the characteristics of the rotor studied (Fan 280 cement draft fan). It is an arduous task to manually ascertain the analytical resolution of the differential equations that characterise the vibratory behaviour of the rotor. The numerical approach employing the finite element method, programmed on the ANSYS software, made it possible to perform the vibration analysis of the rotor. First, the FAN 280 cement draft fan rotor is modelled using SolidWorks 3D software and reverse design using the coordinate measuring machine (CMM) for the design of the fins. Then, the modal characteristics of the fan rotor model were analysed using the finite element analysis (FEA) software ANSYS Workbench. Also, to study the effect of blade wear on critical speeds, the Campbell diagram was obtained. Finally, harmonic analysis was performed to determine the amplitude of the rotor vortex at critical speeds obtained with and without blade wear.
Rocznik
Strony
373--381
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Laboratory of Materials and Structural Mechanics, University of Mohamed BoudiafM’sila, B.P 166 Ichbilia, M’sila, 28000, Algeria
  • Laboratory of Materials and Structural Mechanics, University of Mohamed BoudiafM’sila, B.P 166 Ichbilia, M’sila, 28000, Algeria
Bibliografia
  • 1. Kushwaha N, Patel V. Modelling and analysis of a cracked rotor: a review of the literature and its implications. Arch Appl Mech. 2020;90(6):1215-45.
  • 2. Xie F, Aly A-M. Structural control and vibration issues in wind turbines: A review. Eng Struct. 2020;210:110087.
  • 3. Gunter E. Critical speed analysis of offset jeffcott rotor using english and metric units. RODYN Vib Inc, Charlottesville, VA. 2004.
  • 4. Cao H, Niu L, Xi S, Chen X. Mechanical model development of rolling bearing-rotor systems: A review. Mech Syst Signal Process. 2018;102:37-58.
  • 5. Huaitao S, Jizong Z, Yu Z, Gang H, editors. Calculation and analysis of critical speed of high speed motor spindle rotor system. IOP Conf Ser Mater Sci Eng; 2018: IOP Publishing.
  • 6. Lee C-W. Vibration analysis of rotors: Springer Science & Business Media; 1993.
  • 7. Wang C, Zhang D, Ma Y, Liang Z, Hong J. Theoretical and experimental investigation on the sudden unbalance and rub-impact in rotor system caused by blade off. Mech Syst Signal Process. 2016;76:111-35.
  • 8. Cardillo L, Corsini A, Delibra G, Rispoli F, Sheard AG, Venturini P. Predicting the performance of an industrial centrifugal fan incorporating cambered plate impeller blades. Period Polytech Mech Eng. 2014;58(1):15-25.
  • 9. Krishna BRV, Mudgala S, Seth D. A comparative dynamic analysis of rotor involving three engineering materials applying finite element analysis (FEA) simulation. Mater Today Proc. 2021;47:4003-14.
  • 10. Hnin MT, Htike TM. Investigation of natural frequency and critical speed for Jeffcott rotor system. J Res Appl Mech Eng. 2021;9(1).
  • 11. Nan JY, Wang M, Zan T, Zhang JX, editors. Vibration Characteristics Analysis of a High-Speed Horizontal Machining Center. Adv Mater Res; 2012: Trans Tech Publ.
  • 12. Khan MM, Shailesh P, Prasad M. Rotor Dynamic Analysis Of Driving Shaft Of Dry Screw Vacuum Pump. 2019.
  • 13. Khamari DS, Kar PS, Jena S, Kumar J, Behera SK, editors. Rotordynamic Analysis of High-Speed Rotor Used in Cryogenic Turboexpander Using Transfer Matrix Method. Proceedings of the 6th National Symposium on Rotor Dynamics; 2021: Springer.
  • 14. Bai B, Zhang L, Guo T, Liu C. Analysis of dynamic characteristics of the main shaft system in a hydro-turbine based on ANSYS. Procedia Eng. 2012;31:654-8.
  • 15. Sinha JK, Lees A, Friswell M. Estimating unbalance and misalignment of a flexible rotating machine from a single run-down. J Sound Vib. 2004;272(3-5):967-89.
  • 16. Yadav H, Upadhyay S, Harsha S. Study of effect of unbalanced forces for high speed rotor. Procedia Eng. 2013;64:593-602.
  • 17. Fegade R, Patel V, Nehete R, Bhandarkar B. Unbalanced response of rotor using ansys parametric design for different bearings. Int J Eng Sci Emerg Technol. 2014;7(1):506-15
  • 18. Khawaja H, Andleeb Z, Moatamedi M. Multiphysics based Modal and Harmonic Analysis of Axial Turbines. Int J Multiphysic. 2022;16(1):81-94.
  • 19. Shuming L, Yujia W, editors. Damping Optimization of High Pressure Rotor Support Based on Harmonic Response Analysis. J Phys Conf Ser; 2021: IOP Publishing.
  • 20. Nagaraj B, Patil L, Kamanat PK, Dhuri K, Azam MS. Rotordynamic Analysis of Bolted Disk-Drum Rotor with Contact Nonlinearity.
  • 21. Xu H, Wang YQ. Differential transformation method for free vibration analysis of rotating Timoshenko beams with elastic boundary conditions. Int J Appl Mech. 2022;14(6):21.
  • 22. Chong-Won L. Vibration analysis of rotors. SOLID Mech ITS Appl. 1993;21:156.
  • 23. Ansys. Rotordynamic Analysis Guide. 2021:158.
  • 24. Grunwald B. Vibration analysis of shaft in SolidWorks and ANSYS. 2018.
  • 25. Mansoora HI, Al-Shammari M, Al-Hamood A, editors. Theoretical Analysis of the Vibrations in Gas Turbine Rotor. IOP Conf Ser Mater Sci Eng; 2020: IOP Publishing.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd30e13a-ac9c-48be-b217-42befdebd21c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.