PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlocal analysis of single and double-layered graphene cylindrical panels and nano-tubes under internal and external pressures considering thermal effects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mechanical behavior of a bilayer graphene cylindrical panel and nano-tube is studied based on nonlocal continuum mechanics with regard to this aim, von-Karman assumptions and nonlocal theory of Eringen are considered. Then, the governing equations and boundary conditions have been derived applying energy method. While analyzing the bilayer cylindrical panel, the van der Waals interaction between the layers is considered in calculations. The constitutive equations are developed for nano-tubes under internal and external pressures. In order to solve the governing equations, the semi-analytical polynomial method (SAPM), which was presented by the authors before, is utilized and bending behavior of bilayer cylindrical panels and nano-tubes is investigated. Finally, the effects of temperature, boundary conditions, elastic foundation, loading, van der Waals interaction between the layers and single layer to bilayer analyses are studied for graphene cylindrical panels and nano-tubes.
Rocznik
Strony
883—896
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
autor
  • Department of Mechanical Engineering, Mashhad branch, Islamic Azad University, Mashhad, Iran
  • Department of Mechanical Engineering, Mashhad branch, Islamic Azad University, Mashhad, Iran
Bibliografia
  • 1. Aghababaei R., Reddy J.N., 2009, Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates, Journal of Sound and Vibration, 326, 277-289
  • 2. Ansari R., Faghih Shojaei M., Gholami R., 2016, Size-dependent nonlinear mechanical behavior of third-order shear deformable functionally graded microbeams using the variational differential quadrature method, Composite Structures, 136, 669-683
  • 3. Bisagni Ch., Cordisco P., 2003, An experimental investigation into the buckling and post-buckling of CFRP shells under combined axial and torsion loading, Composite Structures, 60, 391-402
  • 4. Biswas P., 2014, Thermal stresses, deformations and vibrations of plates and shells – a nonlinear approach, Procedia Engineering, 144, 1023-1030
  • 5. Brush D.O., Almroth B.O., 1975, Buckling of Bars, Plate and Shells, McGraw hill, New York
  • 6. Dastjerdi Sh., Aliabadi Sh., Jabbarzadeh M., 2016a, Decoupling of constitutive equations for multi-layered nano-plates embedded in elastic matrix based on non-local elasticity theory using first and higher order shear deformation theories, Journal of Mechanical Science and Technology, 30, 1253-1264
  • 7. Dastjerdi Sh., Jabbarzadeh M., 2016, Nonlinear bending analysis of bilayer orthotropic graphene sheet resting on Winkler-Pasternak elastic foundation based on non-local continuum mechanics, Composites Part B, 87, 161-175
  • 8. Dastjerdi Sh., Jabbarzadeh M., Aliabadi Sh., 2016b, Nonlinear static analysis of single layer annular/circular graphene sheets embedded in Winkler-Pasternak elastic matrix based on non-local theory of Eringen, Ain Shams Engineering Journal, 7, 873-884
  • 9. Dastjerdi Sh., Lotfi M., Jabbarzadeh M., 2016c, The effect of vacant defect on bending analysis of graphene sheets based on the Mindlin nonlocal elasticity theory, Composites Part B, 98, 78-87
  • 10. Degenhardt R., Kling A., Bethge A., Orf J., Karger L., Rohwer K., Calvi A., 2010, Rolf Zimmermann Investigations on imperfection sensitivity and deduction of improved knock-down factors for unstiffened CFRP cylindrical shells, Composite Structures, 92, 1939-1946
  • 11. Eringen A.C., Edelen D.G.B., 1972, On nonlocal elasticity, International Journal of Engineering Science, 10, 233-248
  • 12. Fazelzadeh S.A., Ghavanloo E., 2014, Vibration analysis of curved graphene ribbons based on an elastic shell model, Mechanics Research Communications, 56, 61-68
  • 13. Hoff N.J., Tsai-Chen S., 1965, Buckling or circular cylindrical shells in axial compression, International Journal of Mechanical Science, 7, 489-520
  • 14. Iijima S., 1991, Helical microtubules of graphitic carbon, Nature, 354, 56-58
  • 15. Khazaeinejad P., Najafizade M.M., Jenabi J., 2010, On the buckling of functionally graded cylindrical shells under combined external pressure and axial compression, Journal of Pressure Vessel Technology ASME, 132-136
  • 16. Lancaster E.R., Calladine C.R., Palmer S.C., 2004, Paradoxical buckling behaviour of a thin cylindrical shell under axial compression, International Journal of Mechanical Science, 42, 843-865
  • 17. Linghai J., Yongliang W., Xinwei W., 2008, Buckling analysis of stiffened circular cylindrical panels using DQ method, Thin Walled Structures, 46, 390-398
  • 18. Martel R., Schmidt T., Shea H.R., Hertel T., Avouris P., 1998, Single and multi-wall carbon nanotube field-effect transistors, Applied Physics Letter, 73, 2447
  • 19. Murmu T., Pradhan S.C., 2009, Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory, Journal of Applied Physics, 105, 064319
  • 20. Nguyen D., Hoang Van T., 2010, Nonlinear analysis of stability for functionally graded cylindrical panels under axial compression, Computational Materials Science, 49, S313-S316
  • 21. Postma H.W.C., Teepen T., Yao Z., Grifoni M., Dekker C., 2001, Carbon nanotube singleelectron transistors at room temperature, Science, 293, 76
  • 22. Pradhan S.C., 2009, Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory, Physics Letters A, 373, 4182-4188
  • 23. Reddy J.N., Pang S.D., 2008, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, Journal of Applied Physics, 103, 023511
  • 24. Tans S.J., Devoret M.H., Dai H., Thess A., Smalley R.E., Geerligs L.J., Dekker C., 1997, Individual single-wall carbon nanotubes as quantum wires, Nature, 386, 474-477
  • 25. Wang Q., Wang C.M., 2007, The constitutive relation and small scale parameter of nonlocal continuum mechanics for modeling carbon nanotube, Nanotechnology, 18, 1-10
  • 26. Zhang L.W., Zhang Y., Zou G.L., Liew K.M., 2016, Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method, Composite structures, 149, 247-260
  • 27. Zhang Y., Lei Z.X., Zhang L.W., Liew K.M., Yu J.L., 2015, Nonlocal continuum model for vibration of single-layered graphene sheets based on the element-free kp-Ritz method, Engineering Analysis with Boundary Elements, 56, 90-97
  • 28. Zhao X., Liew K.M., 2009, Geometrically nonlinear analysis of functionally graded shells, International Journal of Mechanical Science, 51, 131-144
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd2d1a34-fe71-4328-9fec-722ad96a3754
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.