Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Autonomous underwater vehicles are increasingly frequently used in the fields of ocean observation, data collection, and tactical surveillance. Underwater navigation and near real-time communication are the most important factors limiting the performance of these vehicles. In this article, an underwater acoustic communication and positioning system (UACPS) based on heterogeneous gliders is presented. The system consists of an acoustic wave glider and an acoustic underwater glider, and includes an ultrashort baseline and an acoustic modem. The program and communication protocol of the communication and positioning algorithm are independently developed, and the hardware circuit design of the communication and ultra-short baseline positioning, as well as the embedded surface wave gliders and gliders are independently implemented. Sea trial results indicate that the communication distance of the system is more than 3 km and the positioning error is less than 5%. With the further improvement of system performance, the low cost, long time, long distance and near real-time communication characteristics of our UACPS can be used to integrate multiple autonomous unmanned platforms as part of intelligent surveillance robot networks.
Czasopismo
Rocznik
Tom
Strony
154--159
Opis fizyczny
Bibliogr. 20 poz, rys., tab.
Twórcy
autor
- Naval Submarine Academy, Qingdao, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao , China
autor
- Naval Submarine Academy, Qingdao, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao , China
autor
- Naval Submarine Academy, Qingdao, China
autor
- Naval Submarine Academy, Qingdao, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao , China
Bibliografia
- 1. Stinco P, Tesei A, Ferri G, et al. Passive acoustic signal processing at low frequency with a 3-D acoustic vector sensor hosted on a buoyancy glider. IEEE Journal of Oceanic Engineering 2021, vol. 46, no. 1, pp. 283-293. https://doi.org/10.1109/JOE.2020.2968806.
- 2. Zhang W, Wang F, Gao Q, et al. Navigation situation assessment of autonomous surface vehicles in a cooperative hunting environment. Polish Maritime Research. 2022, vol. 29, no. 2, pp. 19-26. https://doi.org/ 10.2478/pomr-2022-0013.
- 3. Akyildiz I F, Pompili D, Melodia T. Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks 2005, vol. 3, no. 3, pp. 257-279. https://doi.org/ 10.1016/j.adhoc.2005.01.004.
- 4. Grund M, Freitag L, Preisig J, et al. The PLUSNet underwater communications system: Acoustic telemetry for undersea surveillance. OCEANS 2006, Boston, MA, USA. 2006, pp. 1-5. https://doi.org/10.1109/OCEANS.2006.307036.
- 5. Barnes C R, Best M M, Johnson F R, et al. Challenges, benefits, and opportunities in installing and operating cabled ocean observatories: Perspectives from NEPTUNE. Canada. IEEE Journal of Oceanic Engineering 2013, vol. 38, no. 1, pp. 144-157. https://doi.org/10.1109/JOE.2012.2212751.
- 6. Lan H, Lv Y, Jin J, Li J, et al. Acoustical observation with multiple wave gliders for Internet of Underwater Things. IEEE Internet of Things Journal 2021, vol. 8, no. 4, pp.2814-2825. https://doi.org/ 10.1109/JIOT.2020.3020862.
- 7. Marques E R B, Pinto J, Kragelund S, et al. AUV control and communication using underwater acoustic networks. OCEANS 2007-Europe. IEEE, 2007, pp. 1-6.
- 8. Petroccia R, Śliwka J, Grati A, et al. Deployment of a persistent underwater acoustic sensor network: The CommsNet17 experience. 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). IEEE, 2018, pp. 1-9.
- 9. Ferri G, Petroccia R, Magistris G D, et al. Cooperative autonomy in the CMRE ASW multistatic robotic network: Results from LCAS18 trial. OCEANS 2019 - Marseille, France. 2019, p. 12. https://doi.org/10.1109/OCEANSE.2019.8867431.
- 10. Ferri G, Stinco P, Magistris G D, et al. Cooperative autonomy and data fusion for underwater surveillance with networked AUVs. 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France. 2020, pp. 871-877. https://doi.org/10.1109/ICRA40945.2020.9197367.
- 11. Zieja M, Wawrzyński W, Tomaszewska J, et al. A method for the interpretation of sonar data recorded during autonomous underwater vehicle missions. Polish Maritime Research 2022, vol. 29, no. 3, pp. 176-186. https://doi.org/10.2478/pomr-2022-0038.
- 12. Akyildiz I F, Pompili D, Melodia T. Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks 2005, vol. 3, no. 3, pp. 257-279.
- 13. Bingham B, Kraus N, Howe B, et al. Passive and active acoustics using an autonomous wave glider. Journal of Field Robotics 2012, vol. 29, no. 6, pp. 911-923.
- 14. Chen B, Pompili D. Team formation and steering algorithms for underwater gliders using acoustic communications. Computer Communications 2012, vol. 35, no. 9, pp. 1017-1028.
- 15. Wang Q, Dai H N, Wang Q, et al. On connectivity of UAVassisted data acquisition for underwater Internet of Things. IEEE Internet of Things Journal 2020, vol.7 no.6, pp. 5371-5385. https://doi.org/ 10.1109/JIOT.2020.2979691.
- 16. Schweim A, Zager M, Schweim M, et al. Unmanned Vehicles on the rise: A review on projects of cooperating robot teams. Automatisierungstechnik 2024, vol. 72, no. 1, pp. 3-14. https://doi.org/ 10.1515/auto-2022-0153.
- 17. Bruzzone G, Ferretti R, Odetti A. Unmanned marine vehicles. Journal of Marine Science and Engineering 2021, vol. 9, no. 3, pp. 257-259. https://doi.org/ 10.3390/jmse9030257.
- 18. Sun Q, Zhou H. An acoustic sea glider for deep-sea noise profiling using an acoustic vector sensor. Polish Maritime Research 2022, vol. 29, no. 1, pp. 57-62. https://doi.org/10.2478/pomr-2022-0006.
- 19. Su R, Zhang D, Li C, et al. Localization and data collection in AUV-aided underwater sensor networks: Challenges and opportunities. IEEE Network 2019, vol. 33, no. 6, pp. 86-93. https://doi.org/ 10.1109/MNET.2019.1800425.
- 20. Magistris G D, Uney M, Stinco P, et al. Selective information transmission using convolutional Neural networks for cooperative underwater surveillance. 2020 IEEE 23rd International Conference on Information Fusion (FUSION), Rustenburg, South Africa, 2020, pp. 1-8. https://doi.org/10.23919/FUSION45008.2020.9190461.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd23f5ea-06f0-40ca-9a70-972321674ab5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.