Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objectives of this study include minimizing the thermal conductivity of the produced materials, reducing dead loads of structures through lightweight composite material production, and increasing perlite use in areas close to material deposits.To this end, lightweight geopolymer composites were produced using ground raw perlite as a precursor, expanded perlite as an aggregate, and sodium hydroxide (NaOH) as an activator. The produced samples were cured in an oven at 110 °C for 24 h. Within the scope of this study, unit weight, compressive strength, and thermal conductivity coefficient tests were conducted. Additionally, microstructure analysis was carried out using scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP). As a result, it has been shown that ground raw perlite can be used as a precursor in geopolymer composites, while expanded perlite demonstrates suitability as a lightweight and porous aggregate for heat insulation applications.
Czasopismo
Rocznik
Tom
Strony
art. e266, 1--10.
Opis fizyczny
Bibliogr. 34 poz., il., tab., wykr.
Twórcy
autor
- Department of Civil Engineering, Kırıkkale University, Kırıkkale, Turkey
autor
- Department of Architecture and Urban Planning, Ankara University, Ayaş, Turkey
autor
- Department of Civil Engineering, Kırıkkale University, Kırıkkale, Turkey
autor
- Department of Civil Engineering, Gazi University, Ankara, Turkey
Bibliografia
- 1. Alakara EH, Nacar S, Sevim O, Korkmaz S, Demir I. Determination of compressive strength of perlite-containing slag-based geopolymers and its prediction using artificial neural network and regression-based methods. Constr Build Mater. 2022;359: 129518.
- 2. Sevim O, Demir I, Alakara EH, Bayer İR. Experimental evaluation of new geopolymer composite with inclusion of slag and construction waste firebrick at elevated temperatures. Polymers. 2023;15(9):2127.
- 3. Gökçe HS, Tuyan M, Nehdi ML. Alkali-activated and geopolymer materials developed using innovative manufacturing techniques: a critical review. Constr Build Mater. 2021;303: 124483.
- 4. Alhawat M, Ashour A, Yildirim G, Aldemir A, Sahmaran M. Properties of geopolymers sourced from construction and demolition waste: a review. J Build Eng. 2022;50: 104104.
- 5. Singh B, Ishwarya G, Gupta M, Bhattacharyya SK. Geopolymer concrete: a review of some recent developments. Constr Build Mater. 2015;85:78-90.
- 6. Mahmoodi O, Siad H, Lachemi M, Dadsetan S, Sahmaran M. Optimization of brick waste-based geopolymer binders at ambient temperature and pre-targeted chemical parameters. J Cleaner Prod. 2020;268: 122285.
- 7. Hadi MNS, Al-Azzawi M, Yu T. Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar. Constr Build Mater. 2018;175:41-54.
- 8. Duxson P, Provis JL, Lukey GC, Van Deventer JS. The role of inorganic polymer technology in the development of ‘green concrete.’ Cem Concr Res. 2007;37(12):1590-7.
- 9. Fernández-Jiménez A, Palomo A. Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem Concr Res. 2005;35(10):1984-92.
- 10. Li C, Sun H, Li L. A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res. 2010;40:1341-9.
- 11. Akbarnezhad A, Huan M, Mesgari S, Castel A. Recycling of geopolymer concrete. Constr Build Mater. 2015;101:152-8.
- 12. Sevim O, Alakara EH, Demir I, Bayer IR. Effect of magnetic water on properties of slag-based geopolymer composites incorporating ceramic tile waste from construction and demolition waste. Arch Civ Mech Eng. 2023;23(2):107.
- 13. Amran YM, Alyousef R, Alabduljabbar H, El-Zeadani M. Clean production and properties of geopolymer concrete – a review. J Cleaner Prod. 2020;251:119679.
- 14. Rostami M, Behfarnia K. The effect of silica fume on durability of alkali activated slag concrete. Constr Build Mater. 2017;134:262-8.
- 15. Olivia M, Nikraz H. Properties of fly ash geopolymer concrete designed by Taguchi method. Mater Des. 2012;36:191-8.
- 16. Noushini A, Castel A. The effect of heat-curing on transport properties of low-calcium fly ash-based geopolymer concrete. Constr Build Mater. 2016;112:464-77.
- 17. Zhang Z, Provis JL, Reid A, Wang H. Geopolymer foam concrete: an emerging material for sustainable construction. Constr Build Mater. 2014;56:113-27.
- 18. Bhardwaj B, Kumar P. Comparative study of geopolymer and alkali activated slag concrete comprising waste foundry sand. Constr Build Mater. 2019;209:555-65.
- 19. Kul A, Ozel BF, Ozcelikci E, Gunal MF, Ulugol H, Yildirim G, Sahmaran M. Characterization and life cycle assessment of geopolymer mortars with masonry units and recycled concrete aggregates assorted from construction and demolition waste. J Build Eng. 2023;78: 107546.
- 20. Ozcelikci E, Kul A, Gunal MF, Ozel BF, Yildirim G, Ashour A, Sahmaran M. A comprehensive study on the compressive strength, durability-related parameters and microstructure of geopolymer mortars based on mixed construction and demolition waste. J Cleaner Prod. 2023;396: 136522.
- 21. Yu LH, Ou H, Lee LL. Investigation on pozzolanic effect of perlite powder in concrete. Cem Concr Res. 2003;33:73-6.
- 22. Çelikten S, Isikdag B. Strength development of ground perlitebased geopolymer mortars. Adv Concr Constr. 2020;9(3):227-34.
- 23. Top S, Vapur H, Altiner M, Kaya D, Ekicibil A. Properties of fly ash-based lightweight geopolymer concrete prepared using pumice and expanded perlite as aggregates. J Mol Struct. 2020;1202: 127236.
- 24. Nematollahi B, Ranade R, Sanjayan J, Ramakrishnan S. Thermal and mechanical properties of sustainable lightweight strain hardening geopolymer composites. Arch Civ Mech Eng. 2017;17(1):55-64.
- 25. ASTM C109/C109M-21. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). West Conshohocken: ASTM International. 2021.
- 26. ASTM D7984-21. Standard test method for measurement of thermal effusivity of fabrics using a modified transient plane source (MTPS) instrument. West Conshohocken: ASTM International. 2021.
- 27. ASTM D4404–18. Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry. West Conshohocken: ASTM International. 2018.
- 28. Diamond S. Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cem Concr Res. 2000;30(10):1517-25.
- 29. Gonzalez-Corominas A, Etxeberria M, Poon CS. Influence of steam curing on the pore structures and mechanical properties of fly-ash high performance concrete prepared with recycled aggregates. Cem Concr Compos. 2016;71:77-84.
- 30. Elyamany HE, Elmoaty MA, Elshaboury AM. Setting time and 7-day strength of geopolymer mortar with various binders. Constr Build Mater. 2018;187:974-83.
- 31. Kaur K, Singh J, Kaur M. Compressive strength of rice husk ssh based Geopolymer: the effect of alkaline activator. Constr Build Mater. 2018;169:188-92.
- 32. Papa E, Medri V, Murri AN, Laghi L, Aloysio GD, Bandini S, Landi E. Characterization of alkali bonded expanded perlite. Constr Build Mater. 2018;191:1139-47.
- 33. Wongsa A, Sata V, Nematollahi B, Sanjayan J, Chindaprasirt P. Mechanical and thermal properties of lightweight geopolymer mortar incorporating crumb rubber. J Cleaner Prod. 2018;195(10):1069-80.
- 34. Wang L, Liu P, Jing Q, Liu Y, Wang W, Zhang Y, Li Z. Strength properties and thermal conductivity of concrete with the addition of expanded perlite filled with aerogel. Constr Build Mater. 2018;188:747-57.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd2333a9-4ac4-451d-8ae1-6de5cffebcbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.