Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Elastic waves used in Structural Health Monitoring systems have strongly dispersive character. Therefore it is necessary to determine the appropriate dispersion curves in order to proper interpretation of a received dynamic response of an analyzed structure. The shape of dispersion curves as well as number of wave modes depends on mechanical properties of layers and frequency of an excited signal. In the current work, the relatively new approach is utilized, namely stiffness matrix method. In contrast to transfer matrix method or global matrix method, this algorithm is considered as numerically unconditionally stable and as effective as transfer matrix approach. However, it will be demonstrated that in the case of hybrid composites, where mechanical properties of particular layers differ significantly, obtaining results could be difficult. The theoretical relationships are presented for the composite plate of arbitrary stacking sequence and arbitrary direction of elastic waves propagation. As a numerical example, the dispersion curves are estimated for the lamina, which is made of carbon fibers and epoxy resin. It is assumed that elastic waves travel in the parallel, perpendicular and arbitrary direction to the fibers in lamina. Next, the dispersion curves are determined for the following laminate [0°, 90°, 0°, 90°, 0°, 90°, 0°, 90°] and hybrid [Al, 90°, 0°, 90°, 0°, 90°, 0°], where Al is the aluminum alloy PA38 and the rest of layers are made of carbon fibers and epoxy resin.
Czasopismo
Rocznik
Tom
Strony
121--128
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
- Institute of Machine Design, Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawła II 37, 31-864, Kraków, Poland
autor
Bibliografia
- 1. Barski M., Pająk P. (2016), An application of stiffness matrix method to determining of dispersion curves for arbitrary composite materials, Journal of KONES Powertrain and Transport, 23(1), 47-54.
- 2. Giurgiutiu V. (2008), Structural Health Monitoring with Piezoelectric Wafer Active Sensors, Elsevier.
- 3. Haskell N.A. (1953), Dispersion of surface waves on multilayermedia, Bulletin of the Seismological Society of America, 43, 17- 34.
- 4. Hawwa M.A., Nayfeh H.A. (1995), The general problem of thermoelastic waves in anisotropic periodically laminated composites, Composite Engineering, 5, 1499- 1517.
- 5. Kamal A., Giurgiutiu V. (2014), Stiffness Transfer Matrix Method (STMM) for Stable Dispersion Curves Solution in Anisotropic Composites, Proc. of SPIE, Vol. 9064.
- 6. Kausel E. (1986), Wave propagation in anisotropic layered media. International Journal for Numerical Methods in Engineering, 23, 1567-1578.
- 7. Knopoff L. (1964), A matrix method for elastic waves problems. Bulletin of the Seismological Society of America, 43, 431-438.
- 8. Lowe J.S.M. (1995), Techniques for Modeling Ultrasonic Waves in Multilayered Media, IEEE Transactions on Ultrasonics, Ferroelectric and Frequency Control, 42, 525-542.
- 9. Nayfeh A.H. (1991), The general problem of elastic wave propagation in multilayered anisotropic media, Journal of the Acoustic. Society of America, 89, 1521- 1531.
- 10. Pant S., Laliberte J., Martinez M, Rocha B. (2014), Derivation and experimental validation of Lamb wave equations for an n - layered anisotropic composite laminate, Composite Structure, 111, 566-579.
- 11. Pavlakovic B., Lowe M. (2003), DISPERSE Manual, Imperial College, London.
- 12. Press F., Harkrider D., Seafeldt C.A. (1961), A fast convenient program for computations of surface - wave dispersion curves in multilayered media, Bulletin of the Seismological Society of America, 51, 495- 502.
- 13. Randall M.J. (1967), Fast programs for layered half - space problems, Bulletin of the Seismological Society of America, 57, 1299- 1316.
- 14. Rokhlin S.I., Wang L. (2002a), Stable recursive algorithm for elastic wave propagation in layered anisotropic media: Stiffness matrix method, Journal of the Acoustic Society of America, 112, 822-834.
- 15. Rokhlin S.I., Wang L. (2002b), Ultrasonic waves in layered anisotropic media: characterization of multidirectional composites, International Journal of Solids & Structures, 39, 5529- 5545.
- 16. Royer D., Dieulesaint E. (2000), Elastic Waves in Solids, Springer.
- 17. Schmidt H., Tango G. (1986), Efficient global matrix approach to the computation of synthetic seismograms, Geophysical Journal of Royal Astronomical Society, 84, 331- 359.
- 18. Schwab F.A. (1970), Surface - wave dispersion computations: Knopoff's method, Bulletin of the Seismological Society of America, 60, 1491- 1520.
- 19. Sorohan S., Constantin N., Gavan M., Anghel V. (2011), Extraction of dispersion curves for waves propagating in free complex waveguides by standard finite element codes, Ultrasonics, 51, 503- 515.
- 20. Thomson W. T. (1950), Transmission of elastic waves through a stratified solid medium. Journal of Applied Physics, 21, 89-93.
- 21. Wang L., Rokhlin S.I. (2001), Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media, Ultrasonics, 39, 413-424.
Uwagi
The research project has been financed by National Science Center of Poland pursuant to the decision No. DEC- 2013/09/B/ST8/00178.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd1814e9-1040-407c-bac8-188d29b81841