PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Colour Properties of Polypropylene and Poly-(Lactic) Acid Fibres Dyed With Photoluminescent Dye

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Every manufacturer wants to protect their textile products and their brand. A possible solution is, for example, the insertion of fibres with special pigments visible under irradiation by UV light into the final product. The paper focused on the study of the structure and colourimetric properties of polypropylene (PP) and poly-(lactic) acid (PLA) fibres modified with photoluminescent dye and halloysite (HNT) modified with photoluminescent dye. The photoluminescent dye and HNT modified with photoluminescent dye affected the structure of PP and PLA fibres differently. Increasing the HNT content up to 0.15 % increased the orientation of the PP fibres. In the case of PLA fibres, the increased content of photoluminescent dye in PLA fibres increased their orientation in the observed concentration area. PLA-based knitted fabrics showed better light stability, where there was no visible degradation of the knitted fabric, only its darkening. Likewise, PLA-based knitted fabric showed luminescence in UV light even after accelerated light aging.
Rocznik
Strony
17--27
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
  • Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
  • University of Pardubice, Faculty of Chemical Technology, Studentska 95, 530 09 Pardubice, Czech Republic
  • MyCol d.o.o., Hajdrihova 19, 1000 Ljubljana, Slovenia
  • Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
  • Institute of Man-Made Fibres, Štúrova 2, 059 01 Svit, Slovakia
Bibliografia
  • 1. Gahleitner M, Paulik Ch. Chapter 11 – Polypropylene and other polyolefins. Brydson’s plastic materials. Eight edition, 2017, pp. 79-309, DOI:10.1016/B978-0-323-35824-8.00011-6.
  • 2. Sin T L et al. Polylactic Acid; PLA Biopolymer Technology and Applications, Oxford, UK: Elsevier, 2013, ISBN: 978-1-43-77-4459-0.
  • 3. Wen T, Xiong Z, Liu G, Zhang X, Vos S, Wang R, Joziasse CAP, Wang F, Wang D. The inexistence of epitaxial relationship between stereocomplex and a crystal of poly(lactic acid): Direct experimental evidence. Polymer 2013; 54(7): 1923-1929.
  • 4. Hu J, Zhang T, Gu M, Chen X, Zhang J. Spectroscopic analysis on cold drawinginduced PLLA mesophase. Polymer 2012; 53(22): 4922-4926.
  • 5. Tsuji H, Tashiro K, Bouapao L, Hanesaka M. Synchronous and separate homocrystallization of enantiomeric poly(Llactic acid)/poly(D-lactic acid) blends. Polymer 2012; 53(3): 747-754.
  • 6. Li J, Li Z, Ye L, Zhao X, Coates P, Caton-Rose F, Martyn M. Structure Evolution and Orientation Mechanism of Long-Chain-Branched Poly(Lactic Acid) in the Process of Solid Die Drawing. Eur. Polym. J. 2017; 90: 54-65.
  • 7. Drumright ER, Gruber PR, Henton DE.: Polylaticacid Technology. Weinheim: Advanced Materials 2000; 1841 – 1846.
  • 8. Avérous L. Polylactic Acid: Synthesis, Properties and Applications, (Book, Chapter 21), Monomers, Polymers and CompositesfromRenewableResources, Elsevier, Oxford, UK, pp. 433-450, ISBN: 978-0-08-045316-3.
  • 9. Baykus O, Davulcu A, Dogan M. The Production and Characterization of Poly(Lactic Acid) Fibers Dyeable with Anionic Dyes Using Octaammonium Polyhedral Oligomeric Silsesquioxane Nanoparticle. Polym. Bull. 2017; 74(12): 5111-5128.
  • 10. Blackburn RS, Zhao X, Farrington DW, Johnson L. Effect of D-isomer concentration on the colouration properties of poly(lactic acid). Dyes and Pigments 2006; 70(3): 251-258.
  • 11. Burkinshaw SM, Jeong DS. The Clearing of Poly(Lactic Acid) Fibres Dyed with Disperse Dyes Using Ultrasound. Part 1: Colourimetric analysis. Dyes and Pigments 2008; 77(1): 171-179.
  • 12. Choi J, Lee H, Towns AD. Dyeing Properties of Novel Azo Disperse Dyes Derived from Phthalimide and Colour Fastness on Poly(Lactic Acid) Fiber. Fibers and Polymers 2010; 11(2): 199-204.
  • 13. Burkinshaw SM, Jeong DS. The Clearing of Poly(Lactic Acid) Fibres Dyed with Disperse Dyes Using Ultrasound: Part 3. Dyes and Pigments 2008; 77(2): 387-394.
  • 14. Kim HS, Park YK, Jo AR, Lee JJ. Dispersant-Free Dyeing of Poly(Lactic Acid) Knitted Fabric with Temporarily Solubilized Azo Disperse Dyes. Fibers and Polymers 2017; 18(7): 1263-1268.
  • 15. Christie RM. Colour Chemistry, 2nd edition, Royal Society of Chemistry 2015, ISBN: 978-1-84973-328-1.
  • 16. Valeur B, Berberan-Santos MN. A Brief History of Fluorescence and Phosphorescence before the Emergence of Quantum Theory. J. Chem.Educ. 2011; 88(6): 731–738.
  • 17. Tailorlux GmbH (online), available on www:
  • 18. Penthala R, Son YA. Synthesis of fluorescent cationic coumarin dyes with rigid molecular structures to improve lightfastness and their related modacrylic dyed fibers. Dyes and Pigments 2021;190:109294, https://doi.org/10.1016/j.dyepig.2021.109294.
  • 19. Sezen M. Nanotechnology and nanotextiles: technologies, markets, economics and future trends, Proceedings of 48th Dornbirn Man-Made Fibers Congress, pp. 66, Austria, 16-18 September 2009.
  • 20. Abdullayeva E, Lvov Y. Clay nanotubes for corrosion inhibitor encapsulation: realease control with end stoppers. J.Mat. Chem. 2010;20:6681-6687, ISSN 0959-9428.
  • 21. Cuiping L, Yue Z, Tianwen Z, Yan’ge L, Jiajia R, Guanghui L. Effective solventfree oxidation of cyclohexene to allylic products with oxygen by mesoporous etched halloysite nanotube supported Co 2+. RSC Adv. 2018;8:14870-14878. DOI:10.1039/C7RA11245A
  • 22. Hunt RWG. Measuring colour. London: Ellis Horwood Limited; 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd14c010-acb1-4d0a-94fd-f2c0cad2f111
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.