PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected aspects of the use of nanotechnology – solutions and challenges in the field of safety and in the regulatory area

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanotechnology is one of the areas used in industry and everyday life increasingly frequently. However, the physico-chemical nature of nanosubstances makes it necessary to determine not only the possibility of their use, but also the potential hazards that may be caused by those substances. One such hazard is fire safety. Nanoparticles may cause the risk of explosion, the occurrence and development of fire in an industrial plant. The results of research conducted on a selected sample of manufacturers of products used in fire protection indicated, among others, of the inefficiency of knowledge related to national and EU regulations (containing specific requirements) that can and/ or should be applied and implemented by entrepreneurs. Additionally, legal regulations that define directions of activities in industrial areas do not consider all aspects related to nanosubstances. It is therefore necessary to initiate a discussion and indicate the necessary actions that would allow the identification of a threat stemming from the presence of nanoparticles and the use of nanotechnology during various activities in industrial plants. This will also increase the awareness of managers in this area and those responsible for fire safety, including firefighting teams.
Rocznik
Strony
63--84
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Scientific and Research Centre for Fire Protection, National Research Institute
  • Scientific and Research Centre for Fire Protection, National Research Institute
autor
  • Scientific and Research Centre for Fire Protection, National Research Institute
Bibliografia
  • 1. Aitken, R.J., Creely, K.S., Tran, C.L., (2004). Nanoparticles: An occupational hygiene review. Research Report 274. HSE Health & Safe Executive. Institute of Occupational Medicine, Edinburgh, UK.
  • 2. Asmatulu, E., Twomey, J., Overcash, M., (2012). Life cycle and nano-products: end-oflife assessment. Journal of Nanoparticle Research, 14, 1–8. DOI:10.1007/s11051-012-0720-0
  • 3. Boilard, S., Amyotte, P.R., Khan, F.I., Dastidar, A., Eckhoff, R.K., (2013). Explosibility of micron- and nano-size titanium powders. Journal of Loss Prevention in the Process Industries 26(6), 1646–1654. DOI:10.1016/j.jlp.2013.06.003
  • 4. Boldrin A., Hansen S.F., Baun A., Bloch Hartmann N.I., Astrup T.F., (2014). Environmental exposure assessment framework for nanoparticles in solid waste. J Nanopart Res, 16, 2394. https://doi.org/10.1007/s11051-014-2394-2
  • 5. Bologa, A., Paur, H., Lehner, M., Seifert, H., Wäscher, T., Woletz, K., (2009). Collection of fine particles by novel wet electrostatic precipitator. IEEE Trans. Ind. Appl., 45, 2170–2177. https://doi.org/10.1109/TIA.2009.2031887
  • 6. Bujak-Pietrek, S., (2010). Narażenie na nanocząstki w srodowisku pracy jako zagrożenie dla zdrowia. Problemy oceny ekspozycji zawodowej. Medycyna Pracy 61(2), 183–189. https://cybra.lodz.pl/Content/8979/Medycyna_Pracy_2010_T_61_nr_2_(183-189).pdf.
  • 7. Casasola, R., Rincón, J.M., Romero, M., (2012). Glass–ceramic glazes for ceramic tiles: a review. J. Mater. Sci., 47, 553–582. doi:10.1007/s100853-011-5981-y
  • 8. COUNCIL DIRECTIVE 98/24/EC of 7 April 1998 on the protection of the health and safety of workers from the risks related to chemical agents at work (fourteenth individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC). OJ L 131 05.5.1998, p. 0011–0023. https://eur-lex.europa.eu/legal-content/EN/ TXT/?uri=celex%3A31998L0024 [04.11.2023]
  • 9. COUNCIL DIRECTIVE of 12 June 1989 on the introduction of measures to encourage improvements in the safety and health of workers at work. 89/391/EEC. OJ L 183 29.6.1989, p. 1. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31989L0391 [04.11.2023]
  • 10. Demou, E., Peter, P., Hellweg, S., (2008). Exposure to manufactured nanostructured particles in an industrial pilot plant. Ann Occup Hyg 52(8), 695–706. DOI:10.1093/annhyg/men058
  • 11. Demou, E., Stark, W.J., Hellweg, S., (2009). Particle Emission and Exposure during Nanoparticle Synthesis in Research Laboratories. Ann. Occup. Hyg., 53(8), 829–838. DOI:10.1093/annhyg/mep061
  • 12. Ding, Y., (2015). Stability of Nanoparticle Agglomerates under Mechanical Stress and its Effects on their Release into the Air. Thesis, University of Lausanne, https://serval.unil.ch/resource/serval:BIB_7F04C24BA8BF.P001/REF.pdf [04.11.2023].
  • 13. DIRECTIVE 2004/37/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 29 April 2004 on the protection of workers from the risks related to exposure to carcinogens or mutagens at work (Sixth individual Directive within the meaning of Article 16(1) of Council Directive 89/391/EEC) https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32004L0037 [04.11.2023].
  • 14. EP, 2008. Nanomaterials European Parliament resolution of 24 April 2009 on regulatory aspects of nanomaterials (2008/2208(INI)). OJ C 184E , 8.7.2010, p. 82–89. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52009IP0328 [04.11.2023].
  • 15. Eurostat. https://ec.europa.eu/eurostat/statisticsexplained/index.php/Waste_statistics, [04.11.2023]
  • 16. Fonseca, A.S., Maragkidou, A., Viana, M., Querol, X., Hämeri, K., de Francisco, I., Estepa, C., Borrell, C., Lennikov, V., de la Fuente, G.F., (2016). Process-generated nanoparticles from ceramic tile sintering: Emissions, exposure and environmental release. Science of The Total Environment, 565, 922–932. https://doi.org/10.1016/j.scitotenv.2016.01.106
  • 17. Fonseca, A.S., Viana, M., Querol, X., Moreno, N., de Francisco, I., Estepa, C., de la Fuente, G.F., (2015). Ultrafine and nanoparticle formation and emission mechanisms during laser processing of ceramic materials. J. Aerosol Sci., 88, 48–57. https://doi.org/10.1016/j.jaerosci.2015.05.013
  • 18. Göhler, D., Stintz, M., Hillemann, L., Vorbau, M., (2010). Characterization of nanoparticle release from surface coatings by the simulation of a sanding process. Ann. Occup. Hyg., 54(6), 615–624. DOI:10.1093/annhyg/meq053
  • 19. Harish, K.K., Nagasamy, V., Himangshu, B., Anuttam, K., (2018). Metallic Nanoparticle: A Review. Biomed J Sci &Tech Res., 4(2), 3765. DOI: 10.26717/ BJSTR.2018.04.001011
  • 20. Hartmann, N.B., Skjolding, L.M., Hansen, S.F., Kjølholt, J., Gottschalck, F., Baun, A., (2014). Environmental fate and behaviour of nanomaterials, Odense (Denmark): The Danish Environmental Protection Agency.
  • 21. INRS, 2009. Nanomaterials. Definitions, toxicological risk, characterisation of occupational exposure and prevention measures. INRS ed 6050, 2009. http://www.inrs.fr/default/dms/inrs/CataloguePapier/ED/TI--ED-6050BIS/ed6050bis.pdf [04.11.2023]
  • 22. ISO/TS 27687:2008. Nanotechnologies – Terminology and definitions for nano-objects – Nanoparticles, nanofibre and nanoplate.
  • 23. Janik, P., (2023). Znaczenie rozwoju metodyki analizy i oceny zagrożeń pożarowych oraz innych miejscowych zagrożeń. Józefów: CNBOP-PIB.
  • 24. Kaminski, H., Beyer, M., Fissan, H., Asbach, C. and Kuhlbusch, T.A., (2015). Measurements of Nanoscale TiO2 and Al2O3 in Industrial Workplace Environments – Methodology and Results. Aerosol Air Qual. Res., 15, 129–141. https://doi.org/10.4209/aaqr.2014.03.0065
  • 25. Kielin, J., Lesiak, P., (tłumaczenie i redakcja), (2023). Inżynieryjne metody ochrony przeciwpożarowej. Poradnik, Józefów: CNBOP-PIB.
  • 26. Kobes, P., Sander, G.G., (eds.), (2016). Legal Context in the Chosen Order and Security Area. Hamburg: Verlag Dr Kovač.
  • 27. Kogut, B., (red.), (2015). Współczesność oraz perspektywy Krajowego Systemu Ratowniczo-Gaśniczego – vol. II, Cracow: Szkoła Aspirantow PSP w Krakowie.
  • 28. Kuhlbusch, T.A.J., Asbach, C., Fissan, H., Göhler, D., Stintz, M., (2011). Nanoparticle exposure at nanotechnology workplaces. A review. Particle and Fibre Toxicology, 8, 22. https://doi.org/10.1186/1743-8977-8-22
  • 29. Kurjane, N., Zvagule, T., Reste, J., Martinsone, Z., Pavlovska, I., Martinsone, I., Vanadzins, I., (2017). The effect of different workplace nanoparticles on the immune systems of employees. J Nanopart Res, 19(9), 320. DOI: 10.1007/s11051-017-4004-6
  • 30. Lahoz, R., de la Fuente, G.F., Pedra, J.M., Carda J.B., (2011). Laser engraving of ceramic tiles. Int. J. Appl. Ceram. Technol., 8(5), 1208–1217. 10.1111/j.1744-7402.2010.02566.x
  • 31. Lowry, G.V., Gregory, K.B., Apte, S.C., Lead, J.R., (2012). Transformations of Nanomaterials in the Environment. Environmental Science & Technology, 46, 6893–6899. https://doi.org/10.1021/es300839e
  • 32. Nanoparticles from Printer Emissions in Workplace Environments. Safe Work Australia. (2011), p. 69. https://www.safeworkaustralia.gov.au/system/files/documents/1702/nanoparticles_from_printer_emissions.pdf [04.11.2023]
  • 33. Nechvatal, M., Klouda, K., Kubatova, H., Roupcova, P., Batrlova, K., (2023). Emission of Nanoparticles in the Nanotextile Industry, Chemical Engineering Transactions, 101, 217-222 DOI:10.3303/CET23101037.
  • 34. Nowack, B., Ranville, JF., Diamond, S., Gallego-Urrea, J., Metcalfe, C., Rose, J., Horne, N., Koelmans, A., Klaine, SJ., (2012). Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem, 31(1), 50–59. DOI:10.1002/etc.726
  • 35. Oberbek, P., Kozikowski, P., Sobiech, P., Jakubiak,S., Jankowski, T., (2019). Inhalation exposure to various nanoparticles in work environment – contextual information and results of measurements. J Nanopart Res, 21, 222. https://doi.org/10.1007/s11051-019-4651-x
  • 36. OECD, 2022. Chemical Accidents Involving Nanomaterials: Potential Risks and Review of Prevention, Preparedness and Response Measures – Project Report. Series on Chemical Accidents No. 34. ENV/CBC/MONO(2022)19. https://one.oecd.org/document/env/cbc/mono(2022)19/en/pdf [04.11.2023]
  • 37. Osterwalder, N., Capello, C., Hungerbuhler, K., Start, W.J., (2006). Energy consumption during nanoparticle production: how economic is dry synthesis? J Nanopart Res, 8, 1–9. https://doi.org/10.1007/s11051-005-8384-7
  • 38. Park, J., Kwak, B.K., Bae, E., Lee, J., Kim, Y., Choi, K., Yi, J., (2009). Characterization of exposure to silver nanoparticles in a manufacturing facility. J Nanopart Res, 11, 1705–1712. https://doi.org/10.1007/s11051-009-9725-8
  • 39. Rabajczyk, A., Zielecka, M., (2020). Environmental transformations of metal nanoparticles from industrial sources, Przemysł Chemiczny, 99/7, 1010–1014. DOI: 10.15199/62.2020.7.8
  • 40. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006 (Text with EEA relevance). OJ L 353, 31.12.2008, p. 1–1355. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008R1272 [04.11.2023]
  • 41. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20231201 [04.12.2023]
  • 42. Roes, L., Patel, M.K., Worrell, E., Ludwig, C., (2012). Preliminary evaluation of risks related to waste incineration of polymer nanocomposites. Sci Total Environ, 417–418, 76–86. https://doi.org/10.1016/j.scitotenv.2011.12.030
  • 43. Santandrea, A., Pacault, S., Perrin, L., Vignes, A., Dufaud, O., (2019). Nanopowders explosion: Influence of the dispersion characteristics. Journal of Loss Prevention in the Process Industries, 62, 103942 https://doi.org/10.1016/j.jlp.2019.103942
  • 44. Stark, W.J., Pratsinis, S.E., (2002). Aerosol flame reactors for manufacture of nanoparticles. Powder Technol, 126(2), 103–108. https://doi.org/10.1016/S0032-5910(02)00077-3
  • 45. Stone, V., Nowack, B., Baun, A., van den Brink, N., von der Kammer, F., Dusinska, M., Handy, R., Hankin, S., Hassellöv, M., Joner, E., Fernandes, T.F., (2010). Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation. Science of the Total Environment, 408, 1745–1754. https://doi.org/10.1016/j.scitotenv.2009.10.035
  • 46. Voliotis, A., Bezantakos, S., Giamarelou, M., Valenti, M., Kumar, P., Biskos, G., (2014). Nanoparticle emissions from traditional pottery manufacturing. Environ. Sci.: Processes Impacts, 16(6), 1489–1494. https://doi.org/10.1039/C3EM00709J
  • 47. Walser, T., Demou, E., Lang, D.J., Hellweg, S., (2011). Prospective environmental life cycle assessment of nanosilver T-shirts. Environ Sci Technol, 45(10), 4570–4578. https://doi.org/10.1021/es2001248
  • 48. Zapór, L., (2013a). Zagrożenia nanomateriałami w przemyśle tworzyw sztucznych. Zalecenia do oceny i ograniczania ryzyka zawodowego. Warsaw: CIOP-PIB.
  • 49. Zapór, L., (2013b). Nanometryczne struktury metali i tlenków metali w środowisku pracy. Potencjalne zagrożenia. Zasady bezpiecznej pracy. Warsaw: CIOP-PIB. https://m.ciop.pl/CIOPPortalWAR/file/76572/chempyl_Nanometryczne_struktury.pdf [04.11.2023].
  • 50. Zboina, J., (2020). Badania i wdrożenia. Interdyscyplinarność badań bezpieczeństwa. Józefów: CNBOP-PIB. DOI 10.17381/2020.2
  • 51. Zboina, J., Wiśniewski, B., (ed.) (2014). Ochrona przeciwpożarowa a bezpieczeństwo państwa. Józefów: CNBOP-PIB.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd112cec-0817-4ae1-a9ee-d08067a31dc3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.