Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A comparison of the level functions considered by Halperin and Sinnamon is discussed. Moreover, connections between Lorentz-type spaces, down spaces, Cesàro spaces, and Sawyer's duality formula are explained. Applying Sinnamon's ideas, we prove the duality theorem for Orlicz−Lorentz spaces which generalizes a recent result by Kamińska, Leśnik, and Raynaud (and Nakamura). Finally, some applications of the level functions to the geometry of Orlicz−Lorentz spaces are presented.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
55--86
Opis fizyczny
Bibliogr. 49 poz., wykr.
Twórcy
autor
- Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 60-769 Poznań, Poland
autor
- Institute of Mathematics of Electric Faculty, Poznań University of Technology, Piotrowo 3a, 60-965 Poznań, Poland
autor
- Department of Engineering Sciences and Mathematics, Lulea University of Technology, SE-97187, Luea, Sweden
Bibliografia
- [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston 1988.
- [2] V. A. Biktasheva, Level functions and extreme points of the space (1 < q < ∞), Mat. Zametki 35 (198- no. 1, 9-18.
- [3] D. W. Boyd, The Hilbert transform on rearrangement-invariant spaces, Canad. J. Math. 19 (1967), 599-61:
- [4] M. J. Carro and J. Soria, Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal. 112 (1993), no. 1 480-494, DOI 10.1000/jfan.l993.1042.
- [5] M.J. Carro and J. Soria, Boundedness of some integral operators, Canad. J. Math. 45 (1993), no. 6, 1155-116: DOI 10.4153/CJM-1993-064-2.
- [6] S. Chen, Y. Cui, H. Hudzik, and T. Wang, On some solved and unsolved problems in geometry of certain classes of Banach function spaces, Unsolved Problems on Mathematics for the 21st Century, IOS, Amsterdam 2001.
- [7] M. Cwikel, A. Kamińska, L. Maligranda, and L. Pick, Are generalized Lorentz “spaces” really spaces?, Pro; Amer. Math. Soc. 132 (2004), no. 12, 3615-3625, DOI 10.1090/S0002-9939-04-07477-5.
- [8] P. Foralewski, H. Hudzik, and P. Kolwicz, Non-squareness properties of Orlicz-Lorentz function spaces, J. Inequal. Appl. 32 (2013), 25.
- [9] P. Foralewski, H. Hudzik, and P. Kolwicz, Non-squareness properties of Orlicz-Lorentz sequence spaces, J Funct. Anal. 264 (2013), no. 2, 605-629, DOI 10.1186/1029-242X-2013-32.
- [10] A. Gogatishvili and L. Pick, Duality principles and reduction theorems, Math. Inequal. Appl, 3 (2000), no. 4. 539-558, DOI 10.7153/mia-03-51.
- [11] A. Haaker, On the conjugate space of the Lorentz space, Technical Report, Lund 1970, 1-23.
- [12] I. Halperin, Function spaces, Canad. J. Math. 5 (1953), 273-288.
- [13] H. P. Heinig and A. Kufner, Hardy operators of monotone functions and sequences in Orlicz spaces, J. Lon¬don Math. Soc. (2) 53 (1996), 256-270, DOI 10.1112/jlms/53.2.256.
- [14] H. P. Heinig and L. Maligranda, Weighted inequalities for monotone and concave functions, Studia Math. 116 (1995), no. 2,133-165.
- [15] H. Hudzik, A. Kamińska, and M. Mastylo, On the duals of Orlicz-Lorentz space, Proc. Amer. Math. Soc. 130 (2002), no. 6, 1645-1654, DOI 10.1090/S0002-9939-02-05997-X.
- [16] H. Hudzik and L. Maligranda, Amemiya norm equals Orlicz norm in general, Indag. Math. (N.S.) 11 (2000), no. 4, 573-585, DOI 10.1016/S0019-3577(00)80026-9.
- [17] A. Kamińska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990), 29-38, DOI 10.1002/ma- na.19901470104.
- [18] A. Kamińska and D. Kubiak, On the dual of Cesaro function space, Nonlinear Anal. 75 (2012), no. 5, 2760-2773, DOI 10.1016/j.na.2011.11.019.
- [19] A. Kamińska, K. Leśnik, and Y. Raynaud, Dual spaces to Orlicz-Lorentz spaces, Studia Math. 222 (2014), no. 3, 229-261, DOI 10.4064/sm222-3-3.
- [20] A. Kamińska and L. Maligranda, Order convexity arid concavity in Lorentz spaces Λ_p,w,0 < p < ∞, Studia Math. 160 (2004), no. 3, 267-286, DOI 10.4064/sml60-3-5.
- [21] A. Kamińska and M. Mastylo, Abstract duality Sawyer formula and its applications, Monatsh. Math. 151 (2007), no. 3, 223-245, DOI 10.1007/s00605-007-0445-9.
- [22] A. Kamińska and Y. Raynaud, Isomorphic copies in the lattice E and its symmetrization E^(*) with applications to Orlicz-Lorentz spaces, J. Funct. Anal. 257 (2009), no. 1, 271-331, DOI 10.1016/j.jfa.2009.02.016.
- [23] A. Kamińska and Y. Raynaud, New formulas for decreasing rearrangements and a class of Orlicz-Lorentz spaces, Rev. Mat. Complut. 27 (2014), no. 2, 587-621, DOI 10.1007/sl3163-013-0119-l.
- [24] R. Kerman, M. Milman, and G. Sinnamon, On the Brudnyi-Krugljak duality theory of spaces formed by the K-method of interpolation, Rev. Mat. Complut. 20 (2007), no. 2, 367-389, DOI 10.5209/rev_REMA.2007.v20.n2.16492.
- [25] M. A. Krasnoselski" i and Ya. B. Ruticki" l, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen 1961.
- [26] S. G. Krein, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators, Amer. Math. Soc., Providence 1982.
- [27] A. Kufner, L. Maligranda, and L.-E. Persson, The Hardy Inequality. About Its History and Some Related Results, Vydavatelsky Servis, Plzen 2007.
- [28] A. Kufner and L. E. Persson, Weighted Inequalities of Hardy Type, World Scientific, River Edge, NJ 2003, DOI 10.1142/5129.
- [29] K. Leśnik, Monotone substochastic operators and a new Calderon couple, Studia Math. 227 (2015), no. 1, 21-39, DOI 10.4064/sm227-l-2.
- [30] K. Leśnik and L. Maligranda, Abstract Cesaro spaces. Duality, J. Math. Anal. Appl. 424 (2015), no. 2, 932-951, DOI 10.1016/j.jmaa.2014.11.023.
- [31] K. Leśnik and L. Maligranda, Abstract Cesaro spaces. Optimal range, Integral Equations Operator Theory 81 (2015), no. 2, 227-235, DOI 10.1007/s00020-014-2203-4.
- [32] K. Leśnik and L. Maligranda, Interpolation of abstract Cesaro, Copson and Tandori spaces, Indag. Math. (N. S.) 27 (2016), no. 3, 764-785, DOI 10.1016/j.indag.2016.01.009.
- [33] F. E. Levis and H. H. Cuenya, Gateaux differentiability for functional of type Orlicz-Lorentz, Acta Math. Univ. Comenian. (N.S.) 73 (2004), no. 1, 31-41.
- [34] F. E. Levis and H. H. Cuenya, Gateaux differentiability in Orlicz-Lorentz spaces and applications, Math. Nachr. 280 (2007), no. 11,1282-1296, DOI 10.1002/mana.200410553.
- [35] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, II. Function Spaces, Springer-Verlag, Berlin-New York 1979.
- [36] G. G. Lorentz, On the theory of spaces A, Pacific J. Math. 1 (1951), 411-429.
- [37] G. G. Lorentz, Bernstein Polynomials, Univ. of Toronto Press, Toronto 1953.
- [38] L. Maligranda, On Hardy’s inequality in weighted rearrangement invariant spaces and applications. I, II, Proc. Amer. Math. Soc. 88 (1983), no. 1, 75-80, DOI 10.2307/2045111.
- [39] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Math., vol. 5, University of Campinas, Campinas 1989.
- [40] K. Nakamura, On Λ((φ>, M)-spaces, Bull. Fac. Sci. Ibaraki Univ. Ser. A 2 (1970), 31-39.
- [41] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), no. 2, 145-158.
- [42] G. Sinnamon, Weighted Hardy and Opial-type inequalities, J. Math. Anal. Appl. 160 (1991), no. 2, 434-445, DOI 10.1016/0022-247X(91)90316-R.
- [43] G. Sinnamon, Spaces defined by the level function and their duals, Studia Math. Ill (1994), no. 1,19-52.
- [44] G. Sinnamon, The level function in rearrangement invariant spaces, Publ. Mat. 45 (2001), no. 1, 175-198, DOI 10.5565/PUBLMAT_45101_08.
- [45] G. Sinnamon, Transferring monotonicity in weighted norm inequalities, Collect. Math. 54 (2003), no. 2, 181-216.
- [46] G. Sinnamon, Monotonicity in Banach function spaces, Spring School (Prague, 2006), Nonlinear Analysis, Function Spaces and Applications, Vol. 8, Czech Academy of Sciences, Mathematical Institute, Praha, 2007, 205-240.
- [47] A. Sparr, On the conjugate space of the Lorentz L(φ, q), Contemp. Math., vol. 445, Amer. Math. Soc., Providence, RI, 2007, 313-336, DOI 10.1090/conm/445/08610.
- [48] V. D. Stepanov, The weighted Hardy’s inequality for nonincreasing functions, Trans. Amer. Math. Soc. 338 (1993), 173-186, DOI 10.2307/2154450.
- [49] A. C. Zaanen, Integration, North-Holland, Amsterdam 1967.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd0e7a73-10e1-4b53-94c2-07beda5c656c