PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Reaction of Aquatic Plants of Small Rivers of the Turkestan Region of Kazakhstan to Heavy Metal Ions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heavy metals are some of the environmental pollutants that have a serious impact on the environment. The analysis of hydromacrophytes growing in small rivers of the south of Kazakhstan with different contents of heavy metal salts revealed that the morphometric indicators of the same plant species differ significantly, depending on the level of total mineralization of the aquatic environment in different rivers of the Turkestan region. It has been established that two plant species can be used to bioindicate the content of lead ions in the aquatic environment: Azolla caroliniana Willd. and Veronica beccabunga L., which must be introduced into the tested aqueous solutions in the amount of 1.0 kg/m3 and 1.5–2.0 kg/m3, respectively, to fully cover the water column at different depths. The first morphological changes in plants, in the form of destruction of the structure of chloroplasts along the edges of unfolded leaves in A. caroliniana Willd. and slight withering of the lower underwater leaves in V. beccabunga L., occur already at a 1.5 mg/l Pb2+ content in water, and a further increase in the content of lead ions in water to 600.0–800.0 mg/l leads to the death of plants.
Rocznik
Strony
43--49
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
  • Shymkent University, Zhybek Zholy St 131, Shymkent 160031, Kazakhstan
  • Kazakh State Woman Pedagogical University, Almaty 050000, Kazachstan
  • M. Auezov South Kazakhstan University, Tauke Khan Avenue 5, Shymkent, Kazakhstan
  • M. Auezov South Kazakhstan University, Tauke Khan Avenue 5, Shymkent, Kazakhstan
  • Kazakh State Woman Pedagogical University, Almaty 050000, Kazachstan
  • M. Auezov South Kazakhstan University, Tauke Khan Avenue 5, Shymkent, Kazakhstan
Bibliografia
  • 1. Abdelaal M., Mashaly I.A., Srour D.S., Dakhil M.A., El-Liethy M.A., El-Keblawy A., El-Barougy R.F., Halmy M.W.A., El-Sherbeny G.A. 2021. Phytoremediation Perspectives of Seven Aquatic Macrophytes for Removal of Heavy Metals from Polluted Drains in the Nile Delta of Egypt. Biology (Basel), 10(6), 560. DOI: 10.3390/biology10060560
  • 2. Cai S., Zhou S., Cheng J., Wang Q., Dai Y. 2021. Distribution, Bioavailability and Ecological Risk of Heavy Metals in Surface Sediments from the Wujiang River Basin, Southwest of China. Polish Journal of Environmental Studies, 30(6), 5479–5491. https://doi.org/10.15244/pjoes/136185
  • 3. Chen C.J., Han Z.Y., Zhu Y.M., Wu W.X. 2009. [Periphyton and its application in water purification]. Ying Yong Sheng Tai XueBao, 20(11), 2820-2826. (in Chinese)
  • 4. Eid E.M., Galal T.M., Sewelam N.A., Talha N.I., Abdallah S.M. 2020a. Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: a comparative assessment. Environ Sci Pollut Res Int. 27(11), 12138–12151. DOI: 10.1007/s11356-020-07839-9
  • 5. Eid E.M., Galal T.M., Shaltout K.H., El-Sheikh M.A., Asaeda T., Alatar A.A., Alfarhan A.H., Alharthi A., Alshehri A.M.A., Picó Y., Barcelo D. 2020b. Biomonitoring potential of the native aquatic plant Typhadomingensis by predicting trace metals accumulation in the Egyptian Lake Burullus. Sci Total Environ. 20, 714, 136603. DOI: 10.1016/j.scitotenv.2020.136603.
  • 6. Eid E.M., Shaltout K.H., Al-Sodany Y.M., Haroun S.A., Galal T.M., Ayed H., Khedher K.M., Jensen K. 2021. Temporal Potential of Phragmitesaustralis as a Phytoremediator to Remove Ni and Pb from Water and Sediment in Lake Burullus, Egypt. Bull Environ ContamToxicol. 106(3), 516–527. DOI: 10.1007/s00128-021-03120-y
  • 7. Glibovytska N.I., Karavanovych K., Kachala T. 2019. Prospects of Phytoremediation and Phytoindication of Oil-Contaminated Soils With the Help of Energy Plants. Journal of Ecological Engineering, 20(7), 147–154. https://doi.org/10.12911/22998993/109875
  • 8. Issayeva A., Yeshibayev A., Tleukeyeva A., Issayev Y. 2021. Use of Phytomeliorant Plants for Waste Water Purification. Journal of Ecological Engineering, 22(9), 48–57. https://doi.org/10.12911/22998993/141481
  • 9. Katanskaya V.M. 1981. Higher aquatic vegetation of continental reservoirs of the USSR, 1981. (in Russian)
  • 10. Klink A. 2017. A comparison of trace metal bioaccumulation and distribution in Typhalatifolia and Phragmitesaustralis: implication for phytoremediation. Environ SciPollut Res Int. 24(4), 3843–3852. DOI: 10.1007/s11356-016-8135-6
  • 11. Obarska-Pempkowiak H., Tuszyńska A., Sobociński Z. 2003. Polish experience with sewage sludge dewatering in reed systems. Water Sci Technol., 48(5), 111–117.
  • 12. Osei A.R., Konate Y., Abagale F.K. 2019. Pollutant removal and growth dynamics of macrophyte species for faecal sludge treatment with constructed wetland technology. Water Sci Technol. 80(6), 1145–1154. DOI: 10.2166/wst.2019.354
  • 13. Samecka-Cymerman A., Kolon K., Kempers A.J. 2011. Taxusbaccata as a Bioindicator of Urban Environmental Pollution. Polish Journal of Environmental Studies, 20(4), 1021–1027.
  • 14. Senze M., Kowalska-Góralska M., Pokorny P., Kruszyński W. 2017. Bioaccumulation of Heavy Metals in Hydromacrophytes from Five Coastal Lakes (North-Western Poland, Baltic Sea). Acta Univ. Agric. Silvic. Mendel. Brun., 65(4), 1265–1277. DOI: 10.11118/actaun201765041265
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd0e721c-5eff-4443-9ee9-062bc5e9e7b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.