Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The aim of the article is to use Google Trends data to examine the seasonal pattern in interest in travel insurance. Design/methodology/approach: This article examines the use of Google Trends to study the frequency of queries related to „ubezpieczenie turystyczne” [travel insurance] and „EKUZ” [European Health Insurance Card] in Poland. We applied the Holt-Winters method with multiplicative seasonality for our analysis. The statistical analysis was conducted using Statistica software. Findings: In the context of studying queries related to „ubezpieczenie turystyczne” and „EKUZ”, Google Trends offers insights into seasonal variations and emerging trends. Research limitations/implications: This research has several limitations, notably the reliance on search queries to measure interest levels, which may not accurately represent actual tourist behavior. Furthermore, the relationships and patterns identified were tested solely within a single country, thereby constraining the generalizability of the findings to other regions and cultural contexts. Practical implications: The data indicate seasonality, reflecting the public's heightened interest during peak travel periods. This seasonal pattern is crucial for policymakers and businesses in the travel and insurance sectors, enabling them to tailor their services and marketing strategies accordingly. Social implications: The extensive volume of searches conducted via Google generates trend data, which can be analyzed using Google Trends, a publicly accessible tool that compares the volume of internet search queries across different regions and time periods. Consequently, Google Trends can offer indirect estimates and has the potential to detect specific patterns earlier than traditional systems. Originality/value: This study contributes original insights by utilizing Google Trends data to analyze and understand seasonal patterns and interest level for travel insurance.
Rocznik
Tom
Strony
541--559
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
autor
- The Opole University of Technology
autor
- The Opole University of Technology
Bibliografia
- 1. Aaronson, D., Brave, S.A., Butters, R.A., Fogarty, M., Sacks, D.W., Seo, B. (2022). Forecasting unemployment insurance claims in realtime with Google Trends. International Journal of Forecasting, 38(2), pp. 567-581.
- 2. Alt, M.A., Săplăcan, Z., Benedek, B., Nagy, B.Z. (2021). Digital touchpoints and multichannel segmentation approach in the life insurance industry. International Journal of Retail & Distribution Management, 49(5), pp. 652-677.
- 3. Alves de Castro, C., OReilly, I., Carthy, A. (2020). The role of influencers in adolescents' consumer decision-making process: a sustainability approach. Critical Letters in Economics & Finance, 1(1), pp. 31-43.
- 4. Arora, V.S., McKee, M., Stuckler, D. (2019). Google Trends: Opportunities and limitations in health and health policy research. Health Policy, 123(3), pp. 338-341.
- 5. Bokelmann, B., Lessmann, S. (2019). Spurious patterns in Google Trends data-An analysis of the effects on tourism demand forecasting in Germany. Tourism management, 75, pp. 1-12.
- 6. Cebrián, E., Domenech, J. (2024). Addressing Google Trends inconsistencies. Technological Forecasting and Social Change, 202, 123318.
- 7. Çekim, H.Ö., Koyuncu, A. (2022). The impact of google trends on the tourist arrivals: a case of antalya tourism. Alphanumeric Journal, 10(1), pp. 1-14.
- 8. Chien, M.P., Sharifpour, M., Ritchie, B. W., Watson, B. (2017). Travelers' Health Risk Perception and Protective Behavior: A Psychological Approach. Journal of Travel Research, 56(6), pp. 744-759.
- 9. Choe, Y., Kim, H., Choi, Y. (2022). Willingness to pay for travel insurance as a risk reduction behavior: Health-related risk perception after the outbreak of COVID-19. Service Business, 16(2), pp. 445-467. https://doi.org/10.1007/s11628-022-00479-8
- 10. Costa, E.A., Silva, M.E., Galvão, A.B. (2024). Real-time nowcasting the monthly unemployment rates with daily Google Trends data. Socio-Economic Planning Sciences, 101963.
- 11. Dall'Olmo-Riley, F., Scarpi, D., Manaresi, A. (2009). Purchasing services online: a two-country generalization of possible influences. Journal of Services Marketing, 23(2), pp. 92-102.
- 12. De Cantis, S., Ferrante, M. (2011). Measuring seasonality: performance of accommodation establishments in Sicily through the analysis of occupancy rates. In: Tourism economics: Impact analysis (pp. 261-280). Heidelberg: Physica-Verlag HD.
- 13. Ferrante, M., Magno, G.L.L., De Cantis, S. (2018). Measuring tourism seasonality across European countries. Tourism Management, 68, pp. 220-235.
- 14. Forlicz, M., Rólczyński, T., Markiewicz-Patkowska, J. (2017). Charakter zagrożeń w ruchu turystycznym a skłonność do ubezpieczania się. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 500, pp. 21-32.
- 15. Forlicz, M., Rólczyński, T., Markiewicz-Patkowska, J., Oleśniewicz, P. (2018). Impact of information about risk on the attractiveness of tourist travel. Studia i Prace WNEiZ US, 51, pp. 89-100.
- 16. Franzén, A. (2023). Big data, big problems: Why scientists should refrain from using Google Trends. Acta Sociologica, 66(3), pp. 343-347.
- 17. Glogovețan, A.I., Dabija, D.C., Pocol, C.B. (2023). Consumer awareness and search trends for agrifood products certified with European Quality Schemes: PDO, PGI, and TSG-An analysis through Google Trends. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 80(2), pp. 49-59.
- 18. Gössling, S., Scott, D., Hall, C.M. (2020). Pandemics, tourism and global change: a rapid assessment of COVID-19. Journal of sustainable tourism, 29(1), pp. 1-20.
- 19. Groza, A. (2023). The European Health Insurance Card, between Benefits and Limitations Another Piece of Europe in Your Pocket. Perspectives of Law and Public Administration, 12(4), pp. 575-581.
- 20. Havranek, T., Zeynalov, A. (2021). Forecasting tourist arrivals: Google Trends meets mixed-frequency data. Tourism Economics, 27(1), pp. 129-148.
- 21. Hendri, E.P., Fadhlia, S. (2024). Times series data analysis: The Holt-Winters model for rainfall prediction In West Java. International Journal of Applied Mathematics, Sciences, and Technology for National Defense, 2(1), pp. 1-8.
- 22. Höpken, W., Eberle, T., Fuchs, M., Lexhagen, M. (2019). Google Trends data for analysing tourists' online search behaviour and improving demand forecasting: the case of Åre, Sweden. Information Technology & Tourism, 21, pp. 45-62.
- 23. Kerr, G., Kelly L. (2019). Travel insurance: The attributes, consequences, and values of using travel insurance as a risk-reduction strategy. Journal of Travel & Tourism Marketing, 36(2), pp. 191-203.
- 24. Kock, F., Norfelt, A., Josiassen, A., Assaf, A.G., Tsionas, M.G. (2020). Understanding the COVID-19 tourist psyche: the evolutionary tourism paradigm. Annals of tourism research, 85, 103053.
- 25. Lim, C., McAleer, M. (2008). Analysing seasonal changes in New Zealand's largest inbound market. Tourism Recreation Research, 33(1), pp. 83-91.
- 26. Limnios, A.C., You, H. (2021). Can Google Trends Improve Housing Market Forecasts? Curiosity: Interdisciplinary Journal of Research and Innovation, 1(2), pp. 1-17.
- 27. Liu, R., An, E., Zhou, W. (2021). The effect of online search volume on financial performance: Marketing insight from Google trends data of the top five US technology firms. Journal of Marketing Theory and Practice, 29(4), pp. 423-434.
- 28. Luna-Cortés, G., Brady, M. (2024). Measuring travel insurance literacy: effect on Trust in Providers and Intention to purchase. Journal of Travel Research, 00472875231220944.
- 29. Mavragani, A., Ochoa, G., Tsagarakis, K.P. (2018). Assessing the methods, tools, and statistical approaches in Google Trends research: systematic review. Journal of Medical Internet Research, 20(11), e270.
- 30. Menzel, S., Springer, S., Zieger, M., Strzelecki, A. (2023). Google Trends Confirms (COVID)-19 Impact on Tourist Industry. Tourism Culture & Communication, 23(2-3), pp. 97-102.
- 31. Nagao, S., Takeda, F., Tanaka, R. (2019). Nowcasting of the US unemployment rate using Google Trends. Finance Research Letters, 30, pp. 103-109.
- 32. Olszewski-Strzyżowski, J., Dróżdż, R. (2015). Bezpieczne podróżowanie, ubezpieczenia w turystyce. Prace Naukowe Wyższej Szkoły Bankowej w Gdańsku, 39, pp. 341-349.
- 33. Önder, I., Gunter, U. (2016). Forecasting tourism demand with Google Trends for a major European city destination. Tourism Analysis, 21(2-3), pp. 203-220.
- 34. Prabakaran, N., Patrick, H.A., Jawad, A.B. (2024). Global Regionalization of Consumer Neuroscience Behavioral Qualities on Insights From Google Trends. In: Explainable AI Applications for Human Behavior Analysis (pp. 258-274). IGI Global.
- 35. Ruiz-Viñals, C., Gil Ibáñez, M., Del Olmo Arriaga, J.L. (2024). Metaverse and Fashion: An Analysis of Consumer Online Interest. Future Internet, 16(6), 199. https://doi.org/10.3390/fi16060199
- 36. Sarman, I., Curtale, R., Hajibaba, H. (2020). Drivers of travel insurance purchase. Journal of Travel Research, 59(3), pp. 545-558.
- 37. Schneider, P. (2004). Why should the poor insure? Theories of decision-making in the context of health insurance. Health Policy and Planning, 19(6), pp. 349-355.
- 38. Scott, A.B. (2021). A Case Study of Tourism in North Carolina State Parks Using Google Trends. International Journal of Tourism and Hospitality Management in the Digital Age, 5(2), pp. 1-14.
- 39. Sigala, M. (2020). Tourism and COVID-19: impacts and implications for advancing and resetting industry and research. Journal of business research, 117, pp. 312-321.
- 40. Simionescu, M., Streimikiene, D., Strielkowski, W. (2020). What does Google Trends tell us about the impact of Brexit on the unemployment rate in the UK? Sustainability, 12(3), 1011.
- 41. Tan, D., Caponecchia, C. (2021). COVID-19 and the public perception of travel insurance. Annals of Tourism Research, 90, 103106.
- 42. Ulbinaite, A., Kucinskiene, M., Le Moullec, Y. (2014). The Complexity of the Insurance Purchase Decision Making Process. Transformations in Business and Economics, 13(3), pp. 197-218.
- 43. Weremczuk, A., Józefecka, M. (2020). Insurance as a safeguard against implications of a risk in international tourism. Zeszyty Naukowe. Turystyka i Rekreacja, 2, pp. 17-27.
- 44. Woo, G., Liu, C., Sahoo, D., Kumar, A., Hoi, S. (2022). Etsformer: Exponential smoothing transformers for time-series forecasting. arXiv preprint arXiv:2202.01381. https://doi.org/10.48550/arXiv.2202.01381
- 45. Yu, T.W., Chen, T.J. (2018). Online travel insurance purchase intention: A transaction cost perspective. Journal of Travel & Tourism Marketing, 35(9), pp. 1175-1186.
- 46. Żylak, D., Hadzik, A., Ryśnik, J., Tomik, R. (2017). Produkty ubezpieczeniowe jako narzędzia ochrony przed ryzykiem w turystyce sportowej: polskie i chorwackie studia przypadku. Folia Turistica. Akademia Wychowania Fizycznego im. B. Czecha w Krakowie, 43, pp. 85-106.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd0ca3e5-3676-4302-9ef9-bbeeee7491b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.