Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Mikrobiologiczna i chemiczna ocena jakości małych rzek uchodzących do Południowego Bałtyku. Część II : Analiza cieków wodnych w zlewni Zatoki Puckiej
Języki publikacji
Abstrakty
Due to its location, Puck Bay is an area particularly vulnerable to pollution of anthropogenic origin. The aim of the study was to assess the water quality of small watercourses entering the inner part of Puck Bay. The paper presents the results of chemical and microbiological analyses of 10 rivers and canals at their estuaries located on the western shore of the internal Puck Bay. The following environmental parameters were analyzed: conductivity, pH, dissolved oxygen concentration (in situ measurements), COD (cuvette tests), concentrations of ions (ion chromatography). Microbiological analysis included assessment of sanitary condition based on the number of fecal coliforms by a cultivation method. The determination of basic microbiological parameters such as: prokaryotic cell abundance expressed as total cells number (TCN), prokaryotic cell biovolume expressed as average cell volume (ACV), the prokaryotic biomass (PB) and prokaryotic cell morphotype diversity were determined using epifluorescence microscopy method. Based on the obtained results, it was found that small watercourses may carry a notable load of anthropogenic pollution and thus affect the environment of Puck Bay. The results clearly indicate the need for quality monitoring in the rivers and canals in the Coastal Landscape Park, flowing into Puck Bay. The research showed that also smaller watercourses may have an impact on the coastal waters’ state, and thus on the Baltic Sea water quality.
Zatoka Pucka, ze względu na swoje położenie, jest obszarem szczególnie narażonym na zanieczyszczenia pochodzenia antropogenicznego. Celem pracy była ocena jakości wód małych cieków wodnych uchodzących do wewnętrznej części Zatoki Puckiej. W pracy przedstawiono wyniki analiz chemicznych i mikrobiologicznych 10 rzek i kanałów w ujściach zlokalizowanych na zachodnim brzegu wewnętrznej Zatoki Puckiej. Analizie poddano następujące parametry środowiskowe: przewodność, pH, stężenie tlenu rozpuszczonego (pomiary in situ), ChZT (testy kuwetowe), stężenie jonów (chromatografia jonowa). Analiza mikrobiologiczna obejmowała ocenę stanu sanitarnego na podstawie liczby bakterii grupy coli typu kałowego metodą hodowlaną. Oznaczenia parametrów mikrobiologicznych takich jak: liczebność komórek prokariotycznych, średnia objętość komórek, biomasa oraz zróżnicowanie morfotypowe komórek prokariotycznych określono metodą mikroskopii epifluorescencyjnej. Na podstawie uzyskanych wyników stwierdzono, że małe cieki mogą przenosić znaczny ładunek zanieczyszczeń antropogenicznych i tym samym wpływać na środowisko Zatoki Puckiej. Uzyskane wyniki jednoznacznie wskazują na potrzebę prowadzenia monitoringu jakości rzek i kanałów w Nadmorskim Parku Krajobrazowym uchodzących do Zatoki Puckiej. Z badań wynika, że również mniejsze cieki mogą mieć wpływ na stan wód przybrzeżnych, a tym samym na jakość wód Morza Bałtyckiego.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
58--74
Opis fizyczny
Bibliogr. 99 poz., fot., map., rys., tabl., wykr.
Twórcy
autor
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
autor
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
autor
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
- EkoTech Center, Gdansk University of Technology, Gdansk, Poland
autor
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
autor
- Coastal Landscape Park, Wladyslawowo, Poland
autor
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
- EkoTech Center, Gdansk University of Technology, Gdansk, Poland
Bibliografia
- 1. Achermann, S., Mansfeldt, C. B., Müller, M., Johnson, D. R. & Fenner, K. (2020). Relating Metatranscriptomic Profiles to the Micropollutant Biotransformation Potential of Complex Microbial Communities. Environmental Science and Technology. DOI:10.1021/acs.est.9b05421
- 2. Andrulewicz, E. & Janta, A. (1997). Zatoka Pucka Wewnętrzna. In A. Janta (Ed.), Nadmorski Park Krajobrazowy, pp. 123-137. Wydawnictwo Nadmorskiego Parku Krajobrazowego. (in Polish)
- 3. Arheimer, B., Dahné, J. & Donnelly, C. (2012). Climate change impact on riverine nutrient load and land-based remedial measures of the baltic sea action plan. Ambio, 41(6), pp. 600-612. DOI:10.1007/s13280-012-0323-0
- 4. Artioli, Y., Friedrich, J., Gilbert, A. J., McQuatters-Gollop, A., Mee, L. D., Vermaat, J. E., Wulff, F., Humborg, C., Palmeri, L. & Pollehne, F. (2008). Nutrient budgets for European seas: A measure of the effectiveness of nutrient reduction policies. Marine Pollution Bulletin, 56(9), pp. 1609-1617. DOI:10.1016/j.marpolbul.2008.05.027
- 5. Baath, E. (1994). Thymidine and Leucine Incorporation in Soil Bacteria with Different Cell Size. Marine Ecology, 27, pp. 267-278.
- 6. Bączkowska, E., Kalinowska, A., Ronda, O., Jankowska, K., Bray, R. T., Płóciennik, B. & Polkowska, Ż. (2021). Microbial and chemical quality assessment of the small rivers entering the South Baltic . Part I : Case study on the watercourses in the Baltic Sea catchment area. Archives of Environmental Protection, 47(4), pp. 55-73. DOI:10.24425/aep.2021.139502
- 7. Bartram, J. & Rees, G. (2002). Monitoring Bathing Waters - A Practical Guide to the Design and Implementation of Assessments and Monitoring Programmes. In Urban Water. E & FN Spon is an imprint of the Taylor & Francis Group. DOI:10.1016/S1462-0758(02)00006-7
- 8. Bernard, L., Courties, C., Servais, P., Troussellier, M., Petit, M.A., Lebaron, P. Relationships among Bacterial Cell Size , Productivity, and Flow Cytometry. Microb. Ecol. 2000, 40, pp. 148-158.
- 9. Błędzki, L. A. & Kruk-Dowgiallo, L. (1983). Wieloletnie zmiany struktury bentosu Zatoki Puckiej. Człowiek i Środowisko, 7(1-2), pp. 79-93. (in Polish)
- 10. Bricker, S. B., Longstaff, B., Dennison, W., Jones, A., Boicourt, K., Wicks, C. & Woerner, J. (2008). Effects of nutrient enrichment in the nation’s estuaries: A decade of change. Harmful Algae, 8(1), pp. 21-32. DOI:10.1016/j.hal.2008.08.028
- 11. Caruso, G., La Ferla, R., Azzaro, M., Zoppini, A., Marino, G., Petochi, T., Corinaldesi, C., Leonardi, M., Zaccone, R., Fonda, S., Caroppo, C., Monticelli, L., Azzaro, F., Decembrini, F., Maimone, G., Cavallo, R., Stabili, L., Todorova, N., Karamfilov, V., Danovaro, R. (2016). Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European marine strategy framework directive. Critical Reviews in Microbiology, 42(6). DOI:10.3109/1040841X.2015.1087380
- 12. Castaldelli, G., Soana, E., Racchetti, E., Vincenzi, F., Fano, E. A. & Bartoli, M. (2015). Vegetated canals mitigate nitrogen surplus in agricultural watersheds. Agriculture, Ecosystems and Environment, 212, pp. 253-262. DOI:10.1016/j.agee.2015.07.009
- 13. Cochrane, S.K.J., Connor, D.W., Nilsson, P., Mitchell, I., Reker, J., Franco, J., Valavanis, V., Moncheva, S., Ekebom, J. & Nygaard, K. (2010) Marine Strategy Framework Directive. Guidance on the Interpretation and Application of Descriptor 1: Biological Diversity. Report by Task Group 1 on Biological diversity for the European Commission’s Joint Research Centre, Ispra,, Luxembourg, 2010;
- 14. Cole, J. J., Pace, M. L., Caraco, N. F. & Steinhart, G. S. (1993). Bacterial biomass and cell size distributions More and larger cells in anoxic waters in lakes. Aquatic Microbial Ecology, 38(8), pp. 1627-1632.
- 15. Cottrell, M. T. & Kirchman, D. L. (2004). Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquatic Microbial Ecology, 34, pp. 139-149.
- 16. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora, Documents in European Community Environmental Law No L 206 / 7 (1992). DOI:10.1017/cbo9780511610851.039
- 17. Council of Ministers 1988: Zarządzenia Ministra Ochrony Środowiska i Zasobów Naturalnych z dnia 17 listopada 1988 r. (MP nr 32, poz. 292) i z dnia 10 maja 1989 r. (MP Nr 17, poz. 119), (1988). (in Polish)
- 18. Council of Ministers 2014: Rozporządzenie Ministra Środowiska z dnia 22 października 2014 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych., (2014) (testimony of Dz.U.2014 poz.1482). (in Polish)
- 19. Council of Ministers 2015: Rozporządzenie Ministra Zdrowia z dnia 3 lipca 2015 r. zmieniające rozporządzenie w sprawie prowadzenia nadzoru nad jakością wody w kąpielisku i miejscu wykorzystywanym do kąpieli, 1 (2015) (testimony of Dz.U. 2015. poz. 1510). (in Polish)
- 20. Council of Ministers 2016a: Rozporządzenie Rady Ministrów z Dnia 18 Października 2016 r. w Sprawie Planu Gospodarowania Wodami Na Obszarze Dorzecza Wisły, (2016) (testimony of Dz.U. 2016 poz. 1911). (in Polish)
- 21. Council of Ministers 2016b: Rozporządzenie Ministra Środowiska z dnia 21 lipca 2016 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych., (2016) (testimony of Dz.U.2016 poz.1187). (in Polish)
- 22. Council of Ministers 2019: Rozporządzenie Ministra Zdrowia z dnia 17 stycznia 2019 r. w sprawie nadzoru nad jakością wody w kąpielisku i miejscu okazjonalnie wykorzystywanym do kąpieli, (2019) (testimony of Dz.U.2019 poz.255). (in Polish)
- 23. Diaz, R. J. & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), pp. 926-929. DOI:10.1126/science.1156401
- 24. Duan, S., He, Y., Kaushal, S. S., Bianchi, T. S., Ward, N. D. & Guo, L. (2017). Impact of wetland decline on decreasing dissolved organic carbon concentrations along the Mississippi River continuum. Frontiers in Marine Science, 3 (JAN). DOI:10.3389/FMARS.2016.00280
- 25. Ducrotoy, J. P. & Elliott, M. (2008). The science and management of the North Sea and the Baltic Sea: Natural history, present threats and future challenges. Marine Pollution Bulletin, 57(1-5), pp. 8-21. DOI:10.1016/j.marpolbul.2008.04.030
- 26. Dzierzbicka-Głowacka, L., Janecki, M., Dybowski, D., Szymczycha, B., Obarska-Pempkowiak, H., Wojciechowska, E., Zima, P., Pietrzak, S., Pazikowska-Sapota, G., Jaworska-Szulc, B., Nowicki, A., Kłostowska, Ż., Szymkiewicz, A., Galer-Tatarowicz, K., Wichorowski, M., Białoskórski, M. & Puszkarczuk, T. (2019). A new approach for investigating the impact of pesticides and nutrient flux from agricultural holdings and land-use structures on baltic sea coastal waters. Polish Journal of Environmental Studies, 28(4), pp. 2531-2539. DOI:10.15244/pjoes/92524
- 27. Elofsson, K. (2003). Cost-effective reductions of stochastic agricultural loads to the Baltic Sea. Ecological Economics, 47(1), pp. 13-31. DOI:10.1016/j.ecolecon.2002.10.001
- 28. European Court of Auditors. (2016). Combating eutrophication in the Baltic Sea: further and more effective action needed. Special report number 3 (Issue 03). DOI:10.2865/9931
- 29. Gasoll, J. M., Giorgio, P. A. & Massana, R. (1995). Active Versus Inactive Bacteria: Size-Dependence in a Coastal Marine Plankton Community. Marine Ecology Progress Series, 128, pp. 91-97. http://www.int-res.com/articles/meps/128/m128p091.pdf
- 30. Gillor, O., Hadas, O., Post, A. F. & Belkin, S. (2010). Phosphorus and nitrogen in a monomictic freshwater lake: Employing cyanobacterial bioreporters to gain new insights into nutrient bioavailability. Freshwater Biology, 55(6), pp. 1182-1190. DOI:10.1111/j.1365-2427.2009.02342.x
- 31. Giovannoni, S. J. (2017). SAR11 Bacteria: The Most Abundant Plankton in the Oceans. Annual Review of Marine Science, 9(1), pp. 231-255. DOI:10.1146/annurev-marine-010814-015934
- 32. Górniak, A. (2017). Spatial and temporal patterns of total organic carbon along the Vistula River course (Central Europe). Applied Geochemistry, 87(September), pp. 93-101. DOI:10.1016/j.apgeochem.2017.10.006
- 33. Gren, I. M. (2017). Cost-effective nutrient reductions to the Baltic Sea. Managing a Sea: The Ecological Economics of the Baltic, Hjort 1992, pp. 43-56. DOI:10.4324/9781315071367-4
- 34. Hachich, E. M., Di Bari, M., Christ, A. P. G., Lamparelli, C. C., Ramos, S. S. & Sato, M. I. Z. (2012). Comparison of thermotolerant coliforms and Escherichia coli densities in freshwater bodies. Brazilian Journal of Microbiology, 43(2), pp. 675-681. DOI:10.1590/S1517-83822012000200032
- 35. HELCOM. (2009). Eutrophication in the Baltic Sea - An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. DOI:10.1002/iroh.19910760302
- 36. HELCOM, 2015. Updated Fifth Baltic Sea pollution load compilation (PLC-5.5). Baltic Sea Environment Proceedings No. 145
- 37. HELCOM. (2018). State of the Baltic Sea- Second HELCOM holistic assessment, 2011-2016. In Baltic Sea Environment Proceedings (Vol. 155). DOI:10.1016/j.gaitpost.2008.05.016
- 38. Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M. & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34(3), pp. 807-816. DOI:10.1016/S0043-1354(99)00225-0
- 39. Hobot, A., Banaszak, K., Stolarska, M., Sowińska, K., Serafin, R. Stachura, A. (2012). Warunki korzystania z wód zlewni rzeki Redy (SCWP: DW1802, DW1803) - Etap 1 - Dynamiczny bilans ilościowy zasobów wodnych. Available online, accessed on 5 January 2022: http://www.rzgw.gda.pl/cms/fck/uploaded/ZGPW_rozporzadzenia/Bilansowanie%20zasob%C3%B3w_REDA.pdf (in Polish)
- 40. Hong, Z., Zhao, Q., Chang, J., Peng, L., Wang, S., Hong, Y., Liu, G. & Ding, S. (2020). Evaluation of water quality and heavy metals in wetlands along the yellow river in Henan province. Sustainability (Switzerland), 12(4), pp. 1-19. DOI:10.3390/su12041300
- 41. Hooker, K. V., Coxon, C. E., Hackett, R., Kirwan, L. E., O’Keeffe, E. & Richards, K. G. (2008). Evaluation of Cover Crop and Reduced Cultivation for Reducing Nitrate Leaching in Ireland. Journal of Environmental Quality, 37(1), pp. 138-145. DOI:10.2134/jeq2006.0547
- 42. IMGW Data, 2009-2015: Available online, accessed on 20 October 2020: https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/Biuletyn_PSHM/ (in Polish)
- 43. IMGW Data, 2016: Available online, accessed on 20 October 2020: https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/Biuletyn_PSHM/Biuletyn_PSHM_2016_07_(lipiec).pdf (in Polish)
- 44. Kalenik, M. (2014). Skuteczność oczyszczania ścieków w gruncie piaszczystym z warstwą naturalnego klinoptylolitu. Ochrona Środowiska, 36, pp. 43-48 (in Polish).
- 45. Kalinowska D., Wielgat P., Kolerski T. & Zima P. (2020). Model of Nutrient and Pesticide Outflow with Surface Water to Puck Bay (Southern Baltic Sea). Water 12(3), 809. DOI: 10.3390/w12030809
- 46. Klekot, L. (1980a). Ilościowe badania łąk podwodnych zatoki puckiej. Oceanologia, 12, pp. 125-139 (in Polish).
- 47. Klekot, L. (1980b). Zatoka pucka osobliwością hydrologiczną Bałtyku. Oceanologia, 12, pp. 109-123 (in Polish).
- 48. Korth, F.,Fry, B., Liskow, I. & Voss, M. (2013). Nitrogen Turnover during the Spring Outflows of the Nitrate-Rich Curonian and Szczecin Lagoons Using Dual Nitrate Isotopes. Marine Chemistry 154: pp. 1-11. DOI:10.1016/j.marchem.2013.04.012
- 49. Korzeniewski, K. (1993). Zatoka Pucka. Fundacja Rozwoju Uniwersytetu Gdańskiego.
- 50. Kozak, K., Ruman, M., Kosek, K., Karasiński, G., Stachnik, Ł. & Polkowska, Z. (2017). Impact of volcanic eruptions on the occurrence of PAHs compounds in the aquatic ecosystem of the southern part of West Spitsbergen (Hornsund Fjord, Svalbard). Water (Switzerland), 9(1). DOI:10.3390/w9010042
- 51. Krajewska, Z. & Fac-Beneda, J. (2016). Transport of Biogenic Substances in Water- Courses of Coastal Landscape Park. Journal of Elementology 21 (538): pp. 413-23. DOI:10.5601/jelem.2015.20.1.800
- 52. Kruk-Dowgiałło L, S. A. (2008). Gulf of Gdańsk and Puck Bay. [In:] Schiewer U (Ed) Ecology of Baltic coastal waters. Ecological studies. Vol. 197, pp. 139-165. DOI:10,1007/978-3-540-73524-3_7
- 53. Kumar, A. S., Reddy, A. M., Srinivas, L. & Reddy, P. M. (2014). Assessment of Surface Water Quality in Hyderabad Lakes by Using Multivariate Statistical Techniques, Hyderabad-India. Environment and Pollution, 4(2), pp. 14-23. DOI:10.5539/ep.v4n2p14
- 54. Kyllmar, K., Forsberg, L. S., Andersson, S. & Mårtensson, K. (2014). Small agricultural monitoring catchments in Sweden representing environmental impact. Agriculture, Ecosystems and Environment, 198, pp. 25-35. DOI:10.1016/j.agee.2014.05.016
- 55. La Ferla, R., Azzaro, M., Budillon, G., Caroppo, C., Decembrini, F. & Maimone, G. (2010). Distribution of the prokaryotic biomass and community respiration in the main water masses of the Southern Tyrrhenian Sea (June and December 2005). Advances in Oceanography and Limnology, 1(2), pp. 235-257. DOI:10.1080/19475721.2010.541500
- 56. La Ferla, R., Maimone, G., Caruso, G., Azzaro, F., Azzaro, M., Decembrini, F., Cosenza, A., Leonardi, M. & Paranhos, R. (2014). Are prokaryotic cell shape and size suitable to ecosystem characterization? Hydrobiologia, 726, pp. 65-80. DOI:10.1007/s10750-013-1752-x
- 57. Ling, T. Y., Soo, C. L., Liew, J. J., Nyanti, L., Sim, S. F. & Grinang, J. (2017). Application of Multivariate Statistical Analysis in Evaluation of Surface River Water Quality of a Tropical River. Journal of Chemistry, 2017. DOI:10.1155/2017/5737452
- 58. Lundberg, C. (2013). Eutrophication, risk management and sustainability. The perceptions of different stakeholders in the northern Baltic Sea. Marine Pollution Bulletin, 66(1-2), pp. 143-150. DOI:10.1016/j.marpolbul.2012.09.031
- 59. Luo, J., Ledgard, S. F. & Lindsey, S. B. (2008). A test of a winter farm management option for mitigating nitrous oxide emissions from a dairy farm. Soil Use and Management, 24(2), pp. 121-130. DOI:10.1111/j.1475-2743.2007.00140.x
- 60. Łysiak-Pastuszak, E., Drgas, N. & Pia̧tkowska, Z. (2004). Eutrophication in the Polish coastal zone: The past, present status and future scenarios. Marine Pollution Bulletin, 49(3), pp. 186-195. DOI:10.1016/j.marpolbul.2004.02.007
- 61. Massoud, M. A. (2012). Assessment of water quality along a recreational section of the Damour River in Lebanon using the water quality index. Environmental Monitoring and Assessment, 184(7), pp. 4151-4160. DOI:10.1007/s10661-011-2251-z
- 62. Matej-Lukowicz, K., Wojciechowska, E., Nawrot, N. & Dzierzbicka-Głowacka, L. A. (2020). Seasonal contributions of nutrients from small urban and agricultural watersheds in northern Poland. PeerJ, 8, e8381. DOI:10.7717/peerj.8381
- 63. Meier, H. E. M., Hordoir, R., Andersson, H. C., Dieterich, C., Eilola, K., Gustafsson, B. G., Höglund, A. & Schimanke, S. (2012). Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961-2099. Climate Dynamics, 39(9-10), pp. 2421-2441. DOI:10.1007/s00382-012-1339-7
- 64. Michałek, M., Barańska, A., Kuczyński, T., Brzeska-Roszczyk, P., Mioskowska, M., & Tarała, A. (2021). Marine Ecosystem Protection Survey - protection plan for the Coastal Landscape Park. Wydawnictwa Wewnętrzne Instytutu Morskiego Nr WW 7367. Available online, accessed on 5 January 2022: https://pomorskieparki.pl/planyochrony/opracowanie-projektu-planu-ochrony-nadmorskiego-parku-krajobrazowego/ (in Polish)
- 65. Michałek, M. & Kruk-Dowgiałło, L., (2015). Management Program for Zatoka Pucka Region. Areas: Zatoka Pucka and Hel Peninsula (PLH 220032) and Zatoka Pucka (PLB220005). Wydawnictwa Wewnętrzne Instytutu Morskiego w Gdańsku WW 6855A (in Polish)
- 66. Nazeer, S., Ali, Z. & Malik, R. N. (2016). Water Quality Assessment of River Soan (Pakistan) and Source Apportionment of Pollution Sources Through Receptor Modeling. Archives of Environmental Contamination and Toxicology, 71(1), pp. 97-112. DOI:10.1007/s00244-016-0272-x
- 67. Newton, R. J. & McLellan, S. L. (2015). A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan. Frontiers in Microbiology, 6(SEP), pp. 1-13. DOI:10.3389/fmicb.2015.01028
- 68. Ngang, B. U. & Agbazue, V. E. (2016). A Seasonal Assessment of Groundwater Pollution due to Biochemical Oxygen Demand, Chemical Oxygen Demand and Elevated Temperatures in Enugu Northern Senatorial District, South East Nigeria. IOSR Journal of Applied Chemistry (IOSR-JAC, 9(7), pp. 66-73. DOI:10.9790/5736-0907016673
- 69. Noble, R.T., Moore, D.F., Leecaster, M.K., McGee, C.D. & Weisberg, S.B. (2003). Comparison of total coliform, fecal coliform, and enterococcus bacterial indicator response for ocean recreational water quality testing. Water Res. 37, pp. 1637-1643.
- 70. Norland S. (1993). The relationship between biomass and volume of bacteria. [In] Cole J.J. (Ed.) Handbook of methods in aquatic microbial ecology, pp. 303-308. Lewis Publishers.
- 71. Novotny, V. (2003). Water quality: diffuse pollution and watershed management. John Wiley & Sons. Inc., Hoboken, New Jersey.
- 72. Nübel, U., Garcia-Pichel, F., Kühl, M. & Muyzer, G. (1999). Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Applied and Environmental Microbiology, 65(2), pp. 422-430. http://www.ncbi.nlm.nih.gov/pubmed/9925563
- 73. Ordinance of the Governor, 1999: Zarządzenia Nr 173/99 Wojewody Pomorskiego z dnia 30 listopada 1999r.50131_AS_5_.JPG(Dz.U. W.P. nr 131, poz. 1129), (1999) (in Polish).
- 74. Pastuszak, M., Kowalkowski, T., Kopiński, J., Doroszewski, A., Jurga, B. & Buszewski, B. (2018). Long-term changes in nitrogen and phosphorus emission into the Vistula and Oder catchments (Poland)—modeling (MONERIS) studies. Environmental Science and Pollution Research, 25(29), PP. 29734-29751. DOI:10.1007/s11356-018-2945-7
- 75. Pernthaler, J. (2017). Competition and niche separation of pelagic bacteria in freshwater habitats. Environmental Microbiology, 19(6), pp. 2133-2150. DOI:10.1111/1462-2920.13742
- 76. Piniewski, M., Kardel, I., Giełczewski, M., Marcinkowski, P. & Okruszko, T. (2014). Climate change and agricultural development: Adapting polish agriculture to reduce future nutrient loads in a coastal watershed. Ambio, 43(5), pp. 644-660. DOI:10.1007/s13280-013-0461-z
- 77. Pliński, M. & Florczyk, I. (1984). Analizys of the composition and vertical distribution of the macroalgae in western part of the Gulf of Gdańsk in 1979 and 1980. Oceanologia, 19, pp. 101-115.
- 78. Posch, T., Franzoi, J., Prader, M. & Salcher, M. M. (2009). New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquatic Microbial Ecology, 54, pp. 113-126. DOI:10.3354/ame01269
- 79. Rinke, K., Kuehn, B., Bocaniov, S., Wendt-Potthoff, K., Büttner, O., Tittel, J., Schultze, M., Herzsprung, P., Rönicke, H., Rink, K., Rinke, K., Dietze, M., Matthes, M., Paul, L. & Friese, K. (2013). Reservoirs as sentinels of catchments: The Rappbode Reservoir Observatory (Harz Mountains, Germany). Environmental Earth Sciences, 69(2), pp. 523-536. DOI:10.1007/s12665-013-2464-2
- 80. Russell, M. J., Weller, D. E., Jordan, T. E., Sigwart, K. J. & Sullivan, K. J. (2008). Net anthropogenic phosphorus inputs: Spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry, 88(3), pp. 285-304. DOI:10.1007/s10533-008-9212-9
- 81. Sagova-Mareckova, M., Boenigk, J., Bouchez, A., Cermakova, K., Chonova, T., Cordier, T., Eisendle, U., Elersek, T., Fazi, S., Fleituch, T., Frühe, L., Gajdosova, M., Graupner, N., Haegerbaeumer, A., Kelly, A. M., Kopecky, J., Leese, F., Nõges, P., Orlic, S., Panksep,K., Pawlowski, j., Petrusek, A., Piggott, J.J., Rusch, J.C., Salis, R., Schenk, J., Simek, K., Stovicek, A., Strand, D.A., Vasquez, M,I., Vrålstad, T., Zlatkovic, S., Zupancic, M, & Stoeck, T. (2021). Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Research, 191 (December 2020), 116767. DOI:10.1016/j.watres.2020.116767
- 82. Saniewska, D., Gębka, K., Bełdowska, M., Siedlewicz, G., Bełdowski, J. & Wilman, B. (2019). Impact of hydrotechnical works on outflow of mercury from the riparian zone to a river and input to the sea. Marine Pollution Bulletin, 142 (April), pp. 361-376. DOI:10.1016/j.marpolbul.2019.03.059
- 83. Serajuddin, Chowdhury, A. I. & Ferdous, T. (2018). Correlation Among Some Global Parameters Describing Organic Pollutants in River Water: a Case Study. International Journal of Research -GRANTHAALAYAH, 6(7), pp. 278-289. DOI:10.29121/granthaalayah.v6.i7.2018.1308
- 84. Shrestha, S. & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22(4), pp. 464-475. DOI:10.1016/j.envsoft.2006.02.001
- 85. Šimek, K., Vrba, J. & Hartman, P. (1994). Size-Selective Feeding by Cyclidium sp. on Bacterioplankton and Various Sizes of Cultured Bacteria. FEMS Microbiology Ecology, 14(2), pp. 157-167.
- 86. Šimek, K., Nedoma, J., Znachor, P., Kasalický, V., Jezbera, J., Horňák, K. & Sed’a, J. (2014). A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnology and Oceanography, 59(5), pp. 1477-1492. DOI:10.4319/lo.2014.59.5.1477
- 87. Świątecki, A. (1997). Application of bacteriological indicators in the assessment of surface waters. WSP Olsztyn. (in Polish)
- 88. Tanentzap, A. J., Fitch, A., Orland, C., Emilson, E. J. S., Yakimovich, K. M., Osterholz, H. & Dittmar, T. (2019). Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proceedings of the National Academy of Sciences of the United States of America, 116(49), pp. 24689-24695. DOI:10.1073/pnas.1904896116
- 89. Vahtera, E., Conley, D. J., Gustafsson, B. G., Kuosa, H., Pitkänen, H., Savchuk, O. P., Tamminen, T., Viitasalo, M., Voss, M., Wasmund, N. & Wulff, F. (2007). Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio, 36(2-3), pp. 186-194. DOI:10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2
- 90. Węsławski, J. M., Kryla-Straszewska, L., Piwowarczyk, J., Urbański, J., Warzocha, J., Kotwicki, L., Włodarska-kowalczuk, M. & Wiktor, J. (2013). Habitat modelling limitations - Puck Bay, Baltic Sea - a case study. Oceanologia, 55(1), pp. 167-183. DOI:10.5697/oc.55-1.167
- 91. Węsławski, J. M., Warzocha, J., Bradtke, K., Kryla, L., Tatarek, A., Kotwicki, L. & Piwowarczyk, J. (2009). Biological valorisation of the southern Baltic Sea (Polish Exclusive Economic Zone). Oceanologia, 51(3), pp. 415-435.
- 92. Wielgat, P., Kalinowska, D., Szymkiewicz, A., Zima, P., Jaworska-Szulc, B., Wojciechowska, E., Nawrot, N., Matej-Lukowicz, K. & Dzierzbicka-Glowacka, L. A. (2021). Towards a multi-basin SWAT model for the migration of nutrients and pesticides to Puck Bay (Southern Baltic Sea). PeerJ, 9, pp. 1-26. DOI:10.7717/peerj.10938
- 93. Wojciechowska, E., Nawrot, N., Matej-Łukowicz, K., Gajewska, M. & Obarska-Pempkowiak, H. (2019a). Seasonal changes of the concentrations of mineral forms of nitrogen and phosphorus in watercourses in the agricultural catchment area (Bay of Puck, Baltic Sea, Poland). Water Science and Technology: Water Supply, 19(3), pp. 986-994. DOI:10.2166/ws.2018.190
- 94. Wojciechowska, E., Pietrzak, S., Matej-Łukowicz, K., Nawrot, N., Zima, P., Kalinowska, D., Wielgat, P., Obarska-Pempkowiak, H., Gajewska, M., Dembska, G., Jasiński, P., Pazikowska-Sapota, G., Galer-Tatarowicz, K. & Dzierzbicka-Głowacka, L. (2019b). Nutrient loss from three small-size watersheds in the southern Baltic Sea in relation to agricultural practices and policy. Journal of Environmental Management, 252 (May). DOI:10.1016/j.jenvman.2019.109637
- 95. Wojtusiak, R. J. (1950). In the sea. Państwowe Zakłady Wydawnictw Szkolnych. (in Polish)
- 96. Wołowicz, M., Kotwicki, S. & Geringer d’Odenberg, M. (1993). Many years of changes in the biocenosis of the Bay of Puck in the area of the mouth of the sewage treatment plant in Swarzewo. [In] Korzeniewski, K. (Ed.), Puck Bay (pp. 510-519). Fundacja Rozwoju Uniwersytetu Gdańskiego (in Polish).
- 97. Wulff, F., Humborg, C., Andersen, H. E., Blicher-Mathiesen, G., Czajkowski, M., Elofsson, K., Fonnesbech-Wulff, A., Hasler, B., Hong, B., Jansons, V., Mörth, C. M., Smart, J. C. R., Smedberg, E., Stålnacke, P., Swaney, D. P., Thodsen, H., Was, A. & Zylicz, T. (2014). Reduction of Baltic Sea nutrient inputs and allocation of abatement costs within the Baltic Sea catchment. Ambio, 43(1), pp. 11-25. DOI:10.1007/s13280-013-0484-5
- 98. Zaborska, A., Siedlewicz, G., Szymczycha, B., Dzierzbicka-Głowacka, L. & Pazdro, K. (2019). Legacy and emerging pollutants in the Gulf of Gdańsk (southern Baltic Sea) - loads and distribution revisited. Marine Pollution Bulletin, 139(November 2018), pp. 238-255. DOI:10.1016/j.marpolbul.2018.11.060
- 99. Zalewska, T., Woroń, J., Danowska, B. & Suplińska, M. (2015). Temporal changes in Hg, Pb, Cd and Zn environmental concentrations in the southern Baltic Sea sediments dated with 210Pb method. Oceanologia, 57(1), pp. 32-43. DOI:10.1016/j.oceano.2014.06.003
- 100. Zalidis, G., Stamatiadis, S., Takavakoglou, V., Eskridge, K. & Misopolinos, N. (2002). Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agriculture, Ecosystems and Environment, 88(2), pp. 137-146. DOI:10.1016/S0167-8809(01)00249-3
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd0af342-9e53-4382-8540-635afdacc855