Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The kinetics of catalyzed urethane-forming reactions of hydroxyl-terminated polyether (HTPE) with toluene di-isocyanate (TDI) in the presence of bismuth complex catalysts was investigated by non-isothermal differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) was employed to monitor the chemical interactions of relevant groups. The kinetic parameters, including the apparent activation energy (Ea) and reaction rate constants (k) at typical temperatures calculated by the Kissinger and Crane methods, were used to evaluate the catalytic activities of triphenylbismuth (TPB) and tris(3-ethoxyphenyl)bismuthine (TEPB). The variations of Ea were studied to obtain an insight into the consistency of catalytic mechanism for the bismuth complex catalysts. The viscosity build-up of HTPE-based polymer bonded explosive (PBX) slurry was then measured to verify the catalytic activity and the pot-life during an actual manufacturing process, which fitted with the kinetics of the catalyzed cure reaction. The cure process was evaluated by the hardness of the PBX grains maintained at a temperature below typical manufacturing conditions. The results showed that TEPB is an effective catalyst, reducing the Ea of the cure reaction and the manufacturing temperature and time with an acceptable pot-life. The mechanical, thermal characteristics and compatibility of the HTPE-based PBXs were also investigated. The results suggest that TEPB is compatible with HTPE-based PBXs and contributes to improving the mechanical properties and thermal safety.
Rocznik
Tom
Strony
131--149
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, PR China
autor
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, PR China
autor
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, PR China
autor
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, PR China
Bibliografia
- [1] Golofit, T.; Zyśk, K. Thermal Decomposition Properties and Compatibility of CL-20 with Binders HTPB, PBAN, GAP and PolyNIMMO. J. Therm. Anal. Calorim. 2015, 119(3): 1931-1939.
- [2] Chen, F.; Duo, Y.; Luo, S. G.; Luo, Y.; Tan, H. Novel Segmented Thermoplastic Polyurethanes Elastomers Based on Tetrahydrofuran Ethylene Oxide Copolyethers as High Energetic Propellant Binders. Propellants Explos. Pyrotech. 2003, 28(1): 7-11.
- [3] Caro, R. I.; Bellerby, J. M. Synthesis and Characterization of a Hydroxy Terminated Polyether (HTPE) Copolymer for Use as a Binder in Composite Rocket Propellants. Int. J. Energetic Mater. Chem. Propul. 2007, 6(3): 289-306.
- [4] Caro, R. I.; Bellerby, J. M. Characterization and Comparison of Two Hydroxyl-Terminated Polyether Prepolymers. Int. J. Energetic Mater. Chem. Propul. 2010, 9(4): 351-364.
- [5] Daniel, M. A. Polyurethane Binder Systems for Polymer Bonded Explosives. Australian Government, Department of Defense, Report DSTO-GD-0492, 2006.
- [6] Lan, Y.; Li, D.; Zhai, J.; Yang, R. Molecular Dynamics Simulation on the Binder of Ethylene Oxide-Tetrahydrofuran Copolyether Cross-Linked with N100. Ind. Eng. Chem. Res. 2015, 54: 3563-3569.
- [7] Kim, K.; Kim, C.; Yoo, J. Test-based Thermal Decomposition Simulation of AP/HTPB and AP/HTPE Propellants. J. Propul. Power 2011, 27(4): 822-827.
- [8] Hedman, T. D.; Gross, M. L.; Davis, J. J. J.; Davis, N.; Ford, K. P. Experimental Investigation of the Decomposition Preceding Cookoff in a Composite Propellant. J. Propul. Power 2014, 30(6): 1667-1674.
- [9] Caro, R. I.; Bellerby, J. M. Behavior of Hydroxyl-Terminated Polyether (HTPE) Composite Rocket Propellants in Slow Cook-off. Int. J. Energetic Mater. Chem. Propul. 2008, 7(3): 171-185.
- [10] Ahmad, N.; Khan, M.; Ma, X.; Ul-Haq, N. Dynamic Mechanical Characterization of the Crosslinked and Chain-Extended HTPB Based Polyurethanes. Polym. Polym. Compos. 2012, 20(8): 683-691.
- [11] Zhang, P.; Guo, X.; Zhang, J.; Jiao, Q. Application of Liquid Paraffin in Castable CL-20-Based PBX. J. Energ. Mater. 2014, 32(4): 278-292.
- [12] Thibieroz, B.; Lecume, S.; Bigot, Y. Development and Characterization of PBX Cast at Ambient Temperature. 2001 Insensitive Munitions and Energetic Materials Technology Symposium, Bordeaux, France 2001, 531-542.
- [13] Xu, G.; Zhang, J.; Huang, Z. Effects of Porosity and Mechanic Properties of Explosive Charges Launching Safety. Proc. 1996 Autumn Seminar on Propellants, Explosives and Pyrotechnics, Beijing, China 1996, 101-118.
- [14] Huang, Z.; Nie, H.; Zhang, Y.; Tan, L.; Yin, H.; Ma, X. Migration Kinetics and Mechanisms of Plasticizers, Stabilizers at Interfaces of NEPE Propellant/HTPB Liner/EDPM Insulation. J. Hazard. Mater. 2012, 229-230(3): 251-257.
- [15] Fu, X.; Fan, X.; Ju, X.; Qi, X.; Li, J.; Yu, H. Molecular Dynamic Simulations on the Interaction Between an HTPE Polymer and Energetic Plasticizers in a Solid Propellant. RSC Adv. 2015, 5(65): 52844-52851.
- [16] Ou, Y.; Chang, S.; Zhang, B. Effect of Bismuth-containing Catalysts on HTPB Curing Kinetics. (in Chinese) Chin. J. Energ. Mater. 2015, 23(6): 568-572.
- [17] Douglas, W. E.; Overend, A. S. Curing Reactions in Acetylene Terminated Resins-III. DSC, TGA and TMA Study of Catalyzed Cure of an Ethynylaryl-Terminated Monomer. Eur. Polym. J. 1993, 29(11): 1513-1519.
- [18] Hailu, K.; Guthausen, G.; Becker, W.; Konig, A.; Bendfeld, A.; Geissler, E. In-situ Characterization of the Cure Reaction of HTPB and IPDI by Simultaneous NMR and IR Measurements. Polym. Test 2010, 29(4): 513-519.
- [19] Bina, C. K.; Kannan, K.; Ninan, K. N. DSC Study on the Effect of Isocyanates and Catalysts on the HTPB Cure Reaction. J. Therm. Anal. Calorim. 2004, 78(3): 753-760.
- [20] Catherine, K. B.; Krishnan, K.; Ninan, K. N. A DSC Study on Cure Kinetics of HTPB-IPDI Urethane Reaction. J. Therm. Anal. Calorim. 2000, 59(1): 93-100.
- [21] Lee, S.; Choi, J. H.; Hong, I.; Lee, J. W. Curing Behavior of Polyurethane as a Binder for Polymer-Bonded Explosives. J. Ind. Eng. Chem. 2015, 21(8): 980-985.
- [22] Hamshere, B. L.; Lochert, I. J.; Dexter, R. M. Evaluation of PBXN-109: the Explosive Fill for the Penguin Anti-Ship Missile Warhead. Australian Government, Department of Defense, Report DSTO-TR-1471, 2003.
- [23] Standard Test Method for Rubber Property-Durometer Hardness. ASTM D2240-15e1, ASTM International, West Conshohocken, PA, 2015, www.astm.org
- [24] Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM D882-12, ASTM International, West Conshohocken, PA, 2012, www.astm.org
- [25] Wang, J.; An, C.; Li, G.; Liang, L.; Xu, W.; Wen, K. Preparation and Performances of Castable HTPB/CL-20 Booster Explosives. Propellants Explos. Pyrotech. 2011, 36(1): 34-41.
- [26] Luo, S. G.; Tan, H.; Zhang, J.; Wu, Y.; Pei, F.; Meng, X. Catalytic Mechanisms of Triphenylbismuth, Dibutyltin Dilaurate, and Their Combination in Polyurethane-Forming Reaction. J. Appl. Polym. Sci. 1997, 65(6): 1217-1225.
- [27] Šesták, J. Is the Original Kissinger Equation Obsolete Today: not Obsolete the Entire Non-isothermal Kinetics? J. Therm. Anal. Calorim. 2014, 117(1): 3-7.
- [28] Crane, L.; Dynes, P.; Kaelble, D. Analysis of Curing Kinetics in Polymer Composites. J. Polym. Sci. Polym. Lett. Ed. 1973, 11(8): 533-540.
- [29] Koga, N. Ozawa’s Kinetic Method for Analyzing Thermoanalytical Curves. J. Therm. Anal. Calorim. 2013, 113(48): 1527-1541.
- [30] Baker, J. W.; Gaunt, J. The Mechanism of the Reaction of Aryl Isocyanates with Alcohols and Amines. Part III. The “Spontaneous” Reaction of Phenyl Isocyanate with Various Alcohols. Further Evidence Relating to the Anomalous Effect of Dialkylanilines in the Base-Catalysed Reaction. J. Chem. Soc. 1949, 9: 19-24.
- [31] Sekkar, V.; Raunija, T. S. K. Issues Related with Pot Life Extension for Hydroxyl-Terminated Polybutadiene-Based Solid Propellant Binder System. Propellants Explos. Pyrotech. 2015, 40(2): 267-274.
- [32] Carbas, R. J. C.; Da Silva, L. F. M.; Marques, E. A. S.; Lopes, A. M. Effect of Post-cure on the Glass Transition Temperature and Mechanical Properties of Epoxy Adhesives. J. Adhes. Sci. Technol. 2013, 27(23): 2542-2557.
- [33] Wang, Z.; Qiang, H.; Wang, G.; Huang, Q. Tensile Mechanical Properties and Constitutive Model for HTPB Propellant at Low Temperature and High Strain Rate. J. Appl. Polym. Sci. 2015, 132(24): 42104.
- [34] Du, T. Thermal Decomposition Studies of Solid Propellant Binder HTPB. Thermochim. Acta 1989, 138(2): 189-197.
- [35] Chemical Compatibility of Ammunition Components with Explosives (Non-Nuclear Applications). NATO Standardisation Agreement (STANAG) 4147, AC/310 (SG1) D15 (Draft ed. 2) I-96 NAVY/ARMY/AIR.
- [36] Jangid, S. K.; Talawar, M. B.; Singh, M. K.; Nath, T.; Sinha, R. K. Experimental Studies on Advanced Sheet Explosive Formulations Based on 2,4,6,8,10,12-Hexanitro- 2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and Hydroxyl Terminated Polybutadiene (HTPB), and Comparison with a RDX-based System. Cent. Eur. J. Energ. Mater. 2016, 13(1): 135-147.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd006292-5f32-4f49-b09f-a6168d12bb10