Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
By discretising the stochastic demand, a deterministic nonlinear programming formulation is developed. Then, a hybrid simulation-optimisation heuristic that capitalises on the nature of the problem is designed. The outcome is an evaluation problem that is efficiently solved using a spreadsheet model. The main contribution of the paper is providing production managers with a tractable formulation of the production planning problem in a stochastic environment and an efficient solution scheme. A key benefit of this approach is that it provides quick near-optimal solutions without requiring in-depth knowledge or significant investments in optimisation techniques and software.
Czasopismo
Rocznik
Tom
Strony
117--127
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- College of Business Administration, Gulf University for Science and Technology, Kuwait
Bibliografia
- [1] ALTENDORFER K., FELBERBAUER T., JODLBAUER H., Effects of forecast errors on optimal utilisation in aggregate production planning with stochastic customer demand, Int. J. Prod. Res., 2016, 54 (12) 3718–3735.
- [2] AOUAM T., UZSOY R., Zero-order planning models with stochastic demand and workload-dependent lead times, Int. J. Prod. Res., 2015, 53 (6), 1661–1679.
- [3] BRADLEY J.R., AARNTZEN B.C., The simultaneous planning of production, capacity, and inventory in seasonal demand environments, Oper. Res., 1999, 47 (6), 795–806.
- [4] CHATTERJEE S., DIMITRAKOPOULOS R., Production scheduling under uncertainty of an open-pit mine using Lagrangian relaxation and branch-and-cut algorithm, Int. J. Min. Reclam. Environ., 2019, 34 (5), 343–361.
- [5] GOLMOHAMMADI A., HASSINI E., Capacity, pricing and production under supply and demand uncertainties with an application in agriculture, Eur. J. Oper. Res. ,2019, 275 (3), 1037–1049.
- [6] GUMUS A.T., GUNERI A.F., Multi-echelon inventory management in supply chains with uncertain demand and lead times: literature review from an operational research perspective, Proc. IMechE Part B: Eng. Manuf., 2007, 221 (10), 1553–1570.
- [7] HEITSCH H., LEOVEY H.,ROMISCH W., Are quasi-Monte Carlo algorithms efficient for two-satge stochastic programs? Comput. Optim. Appl., 2016, 65 (3), 567–603.
- [8] KAZEMI M.R., HASSANZADEH R., MAHDAVI I., PARGAR F., Applying fuzzy stochastic programming for multi-product multi-time period production planning, J. Ind. Prod. Eng., 2013, 30 (2), 132–147.
- [9] KOBERSTEIN A., LUKAS E., NAUMANN M., Integrated strategic planning of global production network and financial hedging under uncertain demands and exchange rates, Bus. Res., 2013, 6 (2), 215–240.
- [10] KRISHNAN V., ULRICH K.T., Product development decisions. A review of the literature, Manage. Sci., 2001, 47 (1), 1–21.
- [11] LASLO Z., GUREVICH G., KEREN B., Production planning under uncertain demands and yields, JAQM, 2010, 5 (3), 401–408.
- [12] LATTILA A., KORTELAINEN S., HILLETOFTH P., Assumption for inventory modeling. Insights from practice, World Rev. Intermodal Transp. Res., 2019, 8 (2), 147–166.
- [13] LIN P.-C., UZSOY R., Chance-constrained formulations in rolling horizon production planning: an experimental study, Int. J. Prod. Res., 2016, 54 (13), 3927–3942.
- [14] LUCAS C., MIRHASSANI S.A., MITRA G., POOJARI C.A., An application of Lagrangian relaxation to a capacity planning problem under uncertainty, J. Oper. Res. Soc., 2001, 52 (1), 1256–1266.
- [15] MUNDI I., ALEMANY M., POLER R., FUERTES-MIQUEL V., Planning under uncertainty due to homegeneity: proposal of a conceptual model, Int. J. Prod. Res., 2019, 57 (15–16), 5239–5283.
- [16] NEIRO S.M., PINO J.M., Multi-period optimization for production planning of petroleum refineries, Chem. Eng. Commun., 2005, 192 (1–3), 62–88.
- [17] PORTEUS A., PORTEUS E.L., Simultaneous capacity and production management of short-life-cycle, produce-to-stock goods under stochastic demand, Manage. Sci., 2002, 48 (3), 399–413.
- [18] SETHI S.P., ZHANG H., ZHANG Q., Optimal and hierarchical controls in dynamic stochastic manufacturing systems: a survey, Manuf. Serv. Oper. Manag., 2002, 4 (2), 133–170.
- [19] SHAIKH N., PRABHU V., ABRIL D., SANCHEZ D., ARIAS J., RODRIGUEZ E., RIANO G., Kimberly–Clark Latin America builds an optimization-based system for machine scheduling, Interf., 2011, 41 (5), 455–465.
- [20] SHEN Y., Multi-item production planning with stochastic demand: a ranking-based solution, Int. J. Prod. Res., 2013, 51 (1), 138–153.
- [21] SILVER E.A., An overview of heuristic solution methods, J. Oper. Res. Soc., 2004, 55 (9), 936–956.
- [22] SOLYALI O., Production planning with remanufacturing under uncertain demand and returns, H.U. Iktisadi ve Idari Bilimler Fakultesi Dergisis, 2014, 32 (2), 275–296.
- [23] ZHANG X., PRAJAPATI M., PEDEN E., A stochastic production planning model under uncertain seaonal demand and market growth, Int. J. Prod. Res., 2011, 49 (7), 1957–1975.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dcf236e8-9f60-4b51-8ac7-ab11449f6790