PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A CNN Approach to Central Retinal Vein Occlusion Detection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the field of medicine there is a need for the automatic detection of retinal disorders. Blindness in older persons is primarily caused by Central Retinal Vein Occlusion (CRVO). It results in rapid, irreversible eyesight loss, therefore, it is essential to identify and address CRVO as soon as feasible. Hemorrhages, which can differ in size, pigment, and shape from dot-shaped to flame hemorrhages, are one of the earliest symptoms of CRVO. The early signs of CRVO are, hemorrhages, however, so mild that ophthalmologists must dynamically observe such indicators in the retina image known as the fundus image, which is a challenging and time-consuming task. It is also difficult to segment hemorrhages since the blood vessels and hemorrhages (HE) have the same color properties also there is no particular shape for hemorrhages and it scatters all over the fundus image. A challenging study is needed to extract the characteristics of vein deformability and dilatation. Furthermore, the quality of the captured image affects the efficacy of feature Identification analysis. In this paper, a deep learning approach for CRVO extraction is proposed.
Słowa kluczowe
Rocznik
Strony
565--570
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
  • Thiagarajar College of Engineering, Madurai, India
  • Thiagarajar College of Engineering, Madurai, India
  • Thiagarajar College of Engineering, Madurai, India
  • Thiagarajar College of Engineering, Madurai, India
  • Thiagarajar College of Engineering, Madurai, India
Bibliografia
  • [1] Bismita Choudhury, Patrick H.H. and Valliappan Raman, "Automated Detection of Central Retinal Vein Occlusion Using Convolutional Neural Network", Springer International Publishing AG, 2017 https://doi.org/10.1007/978-3-319-63917-8_1
  • [2] N. Rajapaksha, L. Ranathunga, K.M.P.K Bandara, "Detection of Central Retinal Vein Occlusion Using Guided Salient Features", IEEE-Digital Image Computing: Techniques and Applications (DICTA). 2019 https://doi.org/10.1109/DICTA47822.2019.8945864
  • [3] Daisuke Nagasato, Hitoshi Tabuchi, Hideharu Ohsugi, Hiroki Masumoto, Hiroki Enno, Naofumi Ishitobi, Tomoaki Sonobe, Masahiro Kameoka, Masanori Niki, Ken Hayashi, and Yoshinori Mitamura, "Deep Neural Network-Based Method for Detecting Central Retinal Vein Occlusion Using Ultra Wide-Field Fundus Ophthalmoscopy", Hindawi-Journal of Ophthalmology2018. https://doi.org/10.1155/2018/1875431
  • [4] Ganesan P, M. Ganesh, L.M.I. Leo Joseph, V. Kalist, "Central Retinal Vein Occlusion: An Approach for the Detection and Extraction of Retinal Blood Vessels", 2018 Journal of Pharmaceutical Sciences and Research 2018, https://www.jpsr.pharmainfo.in/Documents/Volumes/vol10Issue01/jpsr10011840.pdf
  • [5] Arun G, N Sasirekha, "Detection of Retinal Hemorrhage in Color Fundus Image using Splat Feature Segmentation", IEEE Sponsored 2nd International Conference on Innovations in Information Embedded and Communication Systems ICIIECS 15, 2015, https://doi.org/10.1109/ICIIECS.2015.7192928
  • [6] Sonali S. Gaikwad, Ramesh R. Manza, "Detection of Hemorrhage from Retinal Images Using Digital Image Processing Techniques", International Journal of Engineering Development and Research (IJEDR) 2017. https://www.ijedr.org/papers/IJEDR1704038.pdf
  • [7] Jang Pyo Bae, Kwang Gi Kim, Ho Chul Kang, Chang Bu Jeong, Kyu Hyung Park, and Jeong-Min Hwang, "A Study on Hemorrhage Detection Using Hybrid Method in Fundus Images", Journal of Digital Imaging June 2011. http://dx.doi.org/10.1007/s10278-010-9274-9
  • [8] Syna Sreng, Noppadol Maneerat, Don Isarakorn, Kazuhiko Hamamoto, Ronakorn Panjaphongse, "Automatic Hemorrhages Detection Based on Fundus Images", 7th International Conference on Information Technology and Electrical Engineering (ICITEE) 2015. https://doi.org/10.1109/ICITEED.2015.7408951
  • [9] Navkiran Kaur, Jasmeen Kaur, Mausumi Acharyya, Nishant Kapoor, Somsirsa Chatterjee, Sheifali Gupta, "A Supervised Approach for Automated Detection of Hemorrhages in Retinal Fundus Images", Institute of Electrical and Electronics Engineers (IEEE) 2016. https://doi.org/10.1109/WECON.2016.7993461
  • [10] Lorick Jain, H V Srinivasa Murthy, Chirayush Patel, Devansh Bansal, "Retinal Eye Disease Detection Using Deep Learning", fourteenth International Conference on Information Processing (ACINPRO)-IEEE2018. https://doi.org/10.1109/ICINPRO43533.2018.9096838
  • [11] Sandra Morales, Kjersti Engan, Valery Naranjo, "Retinal Disease Screening through Local Binary Patterns", IEEE Journal of Biomedical and Health Informatics 2015. https://doi.org/10.1109/JBHI.2015.2490798
  • [12] Jun Wu , Shihao Zhang, Zhitao Xiao, "Hemorrhage detection in fundus image based on 2D Gaussian fitting and human visual characteristics", Optics and laser technology, Elseveir https://doi.org/10.1016/j.optlastec.2018.07.049
  • [13] Haiying Xia, Fuyu Zhu, "Expanded Mask R-CNN's Retinal Edema Detection Network", ISICDM'19, August 24-26, Xi'an, China. 2019. http://dx.doi.org/10.1145/3364836.3364869
  • [14] Guodong Zhang, Hasindu Maduranga Suraweera, Adevian Fairuz Pratama, Dazhe Zhao, Zhaoxuan Gong, and Wei Guo, "Automatic Segmentation of Microaneurysm in Retinal Fundus Images", 2020. http://dx.doi.org/10.1088/1757-899X/768/7/072023
  • [15] Ayoub Skouta, Abdelali Elmoufidi, Said Jai, Andaloussi and Ouail Ouchetto, "Hemorrhage semantic segmentation in fundus images for the diagnosis of diabetic retinopathy by using a convolutional neural netrork", Skouta et al. Journal of Big Data network 2022. http://dx.doi.org/10.1186/s40537-022-00632-0
Uwagi
1. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2. The authors express their sincere gratitude to the Thiagarajar college of engineering(TCE) for supporting us to carry out this research work. Also the financial support from TCE under Thiagarajar Research Fellowship Scheme.(File no: TRF/July 2021/03).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dcec5438-edab-4348-aa8b-d677672e154c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.