PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model of processes of the AL25/30 marine engine and its verification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presents a model of the marine diesel engine working process. The research object was the AL25/30 engine. The model consists of partial models of the combustion process in the engine cylinders, the heat exchange process, flows through air and exhaust channels, heat exchange in the intercooler and friction in mechanical components of the engine. The model includes a description of the processes taking place in the turbocharger also. The input data to the model and the verification data were the results of direct measurements on the research facility. The verification showed errors in the calculation of air and exhaust gas parameters not exceeding 11%. The paper also presents an analysis of the results of fast-changing parameters, including combustion pressure in engine cylinders and pressures in individual gas channels. The designed model allows the analysis of the research facility operation and enables its further development towards the assessment of toxic compounds emission to the atmosphere.
Rocznik
Strony
285--291
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • Gdynia Maritime University POLAND
Bibliografia
  • 1.AVL BOOST :Version 2013.2 (2009) Therory documentacion. AVL List Gmbh.
  • 2.Bader P., McLaren D, Quispel G.R.W., WebbM.(2016) Volume preservation by.
  • 3.Cuper-Przybylska D. (2018). Analiza modeli procesów spalania w cylindrze silnika tłokowego. Autobusy - Technika, Eksploatacja, Systemy Transportowe, [S.l.], v. 218, n. 4, pp. 48-52.
  • 4.Cuper-Przybylska D. (2016). Analysis of the possibilities of using modern process working marine diesel engine. Journal of KONES Powertrain and Transport, Vol. 23, No. 2 pp 81-88.
  • 5.Dowell P.G., Akehurst S., Burke R.D. (2017). A real-time capable mixing controlled combustion model for highly diluted conditions. In Energy, Volume 133.
  • 6.Guardiola C., Olmeda P., Pla B., Bares P. (2017) In-cylinder pressure based model for exhaust temperature estimation in internal combustion engines, In Applied Thermal Engineering, Volume 115.
  • 7.Jeongwoo L. J., Sanghyun C., Kyoungdoug M., Minjae K., Hyunsung J., Hyounghyoun K., Yohan C. (2017). Classification of diesel and gasoline dual-fuel combustion modes by the analysis of heat release rate shapes in a compression ignition engine, In Fuel, Volume 209.
  • 8.Kowalski J. (2014) An experimental study of emission and combustion characteristics of marine diesel engine with fuel pump malfunctions, Applied Thermal Engineering, Volume 65, Issues 1-2, pp. 469-476.
  • 9.Lyubarskyy P. and BartelD. (2016). 2D CFD-model of the piston assembly in a diesel engine for the analysis of piston ring dynamics, mass transport and friction, Tribology International, Volume 104, pp. 352-368.
  • 10.Magnussen, B. F. and Hjertager, B.H. (1977). On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Sixteenth International Symposium on Combustion, Pittsburgh: The Combustion Institute.
  • 11.Pawletko R. and Polanowski S. (2012). Influence of gas channels of medium speed marine engines on the accuracy of determination of diagnostic parameters based on the indicator diagrams, Journal of Polish CIMAC. 7-2: pp. 139-146.
  • 12.Pawletko, R. and Polanowski, S. (2010). Research of the influence of Marine diesel engine Sulzer AL. 25/30 load on TDC position on the indication graph, Journal of KONES, Vol. 17, No. 3.
  • 13.Rakopoulos C.D., Antonopoulos K.A., Rakopoulos D.C.(2006). Multi-zone modeling of Diesel engine fuel spray development with vegetable oil, bio-diesel or Diesel Fuels. Energy Conversion and Management 47, pp. 1550-1573.
  • 14.Saeed K., (2017). A novel regenerative multiple zones model for modelling the premixed charge stirred chemical reactor based combustion engines. In Journal of the Energy Institute, Volume 90, Issue 5.
  • 15.Trindade W. and Santos R. (2018). 1D modeling of SI engine using n-butanol as fuel: Adjust of fuel properties and comparison between measurements and simulation. Energy Conversion and Management, Volume 157, pp. 224-238.
  • 16.Zhang, Q., Hao, Z., Zheng, X., Yang, W. (2017) Characteristics and effect factors of pressure oscillation in multi-injection DI diesel engine at high-load conditions. Applied Energy, 195, pp. 52-66.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dce6f42b-a1f8-4ad9-9035-d7df4c965491
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.