PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface modification of AZ91 magnesium alloy using GTAW technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, surface remelting treatment of the AZ91 magnesium alloy by means of welding using a non-consumable electrode in an inert gas shield was carried out. Three variants of surface treatment were used, i.e. the single torch variant with a single heat source without cooling down the samples, the single torch variant with a single heat source and a cooling system with liquid nitrogen, and the double welding torch variant with a double heat source in the torches operating in a tandem configuration. Experimental verification of the applied apparatus solutions was based on both macro- and microstructural assessment of the obtained effects. Comparative analysis of the variants used and the obtained microstructural results allowed the authors to indicate the deficiencies and limitations of particular solutions and to single out the best solution that would be useful for modifying the surface layers of magnesium alloys, as well as other materials having a strong oxygen affinity.
Rocznik
Strony
917--926
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Częstochowa University of Technology, Institute of Materials Engineering, 19 Armii Krajowej St., 42-200 Częstochowa, Poland
  • Częstochowa University of Technology, Institute of Materials Engineering, 19 Armii Krajowej St., 42-200 Częstochowa, Poland
autor
  • Częstochowa University of Technology, Department of Welding, 21 Armii Krajowej St., 42-200 Częstochowa, Poland
Bibliografia
  • [1] I.D. Utu, G. Marginean, I. Hulka, V.A. Serban, and D. Cristea, “Properties of the thermally sprayed Al2O3–TiO2 coatings deposited on titanium substrate”, Int. Journal of Refractory Metals and Hard Materials 51, 118–123 (2015).
  • [2] F. Zhang, C. Zhang, R. Zeng, L. Song, L. Guo, and X. Huang, “Corrosion resistance of the superhydrophobic Mg(OH)2/Mg-Al layered double hydroxide coatings on magnesium alloys”, Metals 6 (4), (2016).
  • [3] M. Gwoździk, “Characteristic of crystallite sizes and lattice deformations changes in the oxide layer formed on steel operated for a long time at an elevated temperature”, Solid State Phenomena 203‒204, 204‒207 (2013).
  • [4] T. Chmielewski, D. Golański, and W. Włosiński, “Metallization of ceramic materials based on the kinetic energy of detonation waves”, Bull. Pol. Ac.: Tech. 63 (2), 449‒456 (2015).
  • [5] J. Iwaszko and K. Kudła, “Surface modification of ZrO2‒10 wt. % CaO plasma sprayed coating”, Bull. Pol. Ac.: Tech. 64 (4), 937‒942 (2016).
  • [6] I. Mitelea, I. Bordeasu, I.D. Utu, and O. Karancsi, “Improvement of the cavitation erosion resistance of titanium alloys deposited by plasma spraying and remelted by laser”, Materiale Plastice 53 (1), 29‒33 (2016).
  • [7] Q.-Y. Wang, S.-L. Bai, Y.-F. Zhang, and Z.-D. Liu, “Improvement of Ni–Cr–Mo coating performance by laser cladding combined re-melting”, Applied Surface Science 308, 285‒292 (2014).
  • [8] H.L. Tian, S.C. Wei, Y.X. Chen, H. Tong, Y. Liu, and B.S. Xu, “Surface remelting treated high velocity arc sprayed FeNi- CrAlBRE coating by Tungsten Inert Gas”, Physics Procedia 50, 322‒327 (2013).
  • [9] J. Sure, A.R. Shankar, and U.K.Mudali, “Surface modification of plasma sprayed Al2O3‒40wt% TiO2 coatings by pulsed ND:YAG laser melting”, Optics and Laser Technology 48, 366‒374 (2013).
  • [10] I. Watanabe, M. McBridge, P. Newton, and K.S. Kurtz, “Laser surface treatment to improve mechanical properties of cast titanium”, Dental Materials 25, 629‒633 (2009).
  • [11] A. Wrońska and A. Dudek, “Characteristics of surface layer of sintered stainless steels after remelting using GTAW method”, Archives of Civil and Mechanical Engineering 14 (3), 425‒432 (2014).
  • [12] M. Szkodo, A. Bień, and M. Antoszkiewicz, “Effect of plasma sprayed and laser re-melted Al2O3 coatings on hardness and wear properties of stainless steel”, Ceramics International 42 (9), 11275–11284 (2016).
  • [13] J. Kusinski, S. Kac, A. Kopia, A. Radziszewska, M. Rozmus--Górnikowska, B. Major, L. Major, J. Marczak, and A. Lisiecki, “Laser modification of the materials surface layer – a review paper”, Bull. Pol. Ac.: Tech. 60 (4), 711‒728 (2012).
  • [14] A.K. Mondal, S. Kumar, C. Blawert, and N.B. Dahotre, “Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy”, Surface and Coatings Technology 202, 3187‒3198 (2008).
  • [15] Y. Jun, G.P. Sun, and S.S. Jia, “Characterization and wear resistance of laser surface melting AZ91D alloy”, Journal of Alloys and Compounds 455, 142‒147 (2008).
  • [16] J. Iwaszko and M. Strzelecka, “Effect of cw-CO2 laser surface treatment on structure and properties of AZ91 magnesium alloy”, Optics and Lasers in Engineering 81, 63‒69 (2016).
  • [17] Z. Zhang, P. Lin, and L. Ren, “Wear resistance of AZ91D magnesium alloy processed by improved laser surface remelting”, Optics and Lasers in Engineering 55, 237‒242 (2014).
  • [18] M. Strzelecka, J. Iwaszko, and M.A. Malik, “Corrosion resistance of AZ91 magnesium alloy after laser remelting treatment”, Journal of Wuhan University of Technology-Mater. Sci. Ed. 31 (5), 1075–1080 (2016).
  • [19] J. Zhou, J. Xu, S. Huang, and X. Feng, “Effect of laser surface melting with alternating magnetic field on wear and corrosion resistance of magnesium alloy”, Surface and Coatings Technology 309 (15), 212‒219 (2017).
  • [20] A.W. Orłowicz and M. Mróz, “Intensity of frictional wear: GTAW treated castings of AK7 alloy”, Archives of Foundry 2 (4), 414‒419 (2002).
  • [21] A.W. Orłowicz and A. Trytek, “Solidification structure GTAWtreated iron castings”, Archives of Foundry 2 (4), 192‒197 (2002).
  • [22] D. Wenbin., J. Haiyan., Z. Xiaoqin., L. Dehui., and Y. Shoushan, “Microstructure and mechanical properties of GTA surface modified composite layer on magnesium alloy AZ31 with SiCp”, Journal of Alloys and Compounds 429, 233‒241 (2007).
  • [23] M. Szafarska, J. Iwaszko, M. Malik, and Sz. Tomczyński, “Surface modification of the AZ91 magnesium alloy”, Archives of Civil and Mechanical Engineering 15, 854‒861 (2015).
  • [24] M. Szafarska, J. Iwaszko, K. Kudła, and I. Łęgowik, “Utilisation of high-energy heat sources in magnesium alloy surface layer treatment”, Archives of Metallurgy and Materials 58 (2), 619‒624 (2013).
  • [25] T. Zhu, Z.W. Chen, and W. Gao, “Incipient melting in partially melted zone during arc welding of AZ91D magnesium alloy”, Materials Science and Engineering A 416, 246‒252 (2006).
  • [26] T. Zhu, Z.W. Chen, and W. Gao, “Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast sheet”, Materials Characterization 59, 1550‒1558 (2008).
  • [27] J. Shen, G. You, S. Long, and F. Pan, “Abnormal macropore formation during double-sided gas tungsten arc welding of magnesium AZ91D alloy”, Materials Characterization 59, 1059‒1065 (2008).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dce1503e-f963-4617-99df-7fda57796d86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.