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Abstract. In the paper, the numerical modelling of heat transfer in one-dimensional crystal-

line solid films is considered. A generalized two-layer problem is described by the Boltz- 

mann transport equations transformed in the phonon energy density equations supplemented 

by the adequate boundary-initial conditions. Such an approach in which the parameters 

appearing in the problem analysed are treated as the constant values is widely used, but 

in this paper the interval values of relaxation time and the boundary condition for silicon 

and diamond are taken into account. The problem formulated has been solved by means 

of the interval lattice Boltzmann method using the rules of directed interval arithmetic. 

In the final part of the paper the results of numerical computations are presented. 
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1. Introduction  

In dielectric materials and semiconductors, the heat transport is mainly realized 

by a quanta of lattice vibrations called phonons. The phonons represent the conduc-

tion of heat and electricity through solids. In non-metals, phonons as heat carriers 

always “move” from the part with the higher temperature to the part with the lower 

temperature and, during  this move, phonons carry energy. This kind of phenomena 

can be described by the Boltzmann transport equation (BTE).  It should be pointed 

out that taking into account the extremely short duration and the domain dimen-

sions expressed in nanometers, the macroscopic heat conduction equation based on 

the Fourier law cannot be used [1, 2]. Such an approach in which the parameters 

appearing in the mathematical model are treated as the constant values is widely 

used [3, 4]. Here, the interval values of relaxation times and boundary conditions 
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for successive sub-domains are taken into account. The relaxation time is estimated 

experimentally, and its actual value is still a subject of discussion [5]. In the paper 

the heat transport proceeding in a two-layered thin film is considered [6-9]. To 

solve the problem formulated, the interval version of the lattice Boltzmann method 

is applied using the rules of directed interval arithmetic [10, 11]. In the final part of 

the paper the examples of numerical computations are shown. 

2. Boltzmann transport equation  

The unsteady BTE in a phonon energy density formulation using the simplifying 

assumptions of the Debye model for one-dimensional two-layered analysis [3, 12] 

can be written as  
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where s = 1, 2 corresponds to the successive layers of the thin film (silicon, diamond), 

s
e  is the phonon energy density, 0

s
e  is the equilibrium phonon energy density, 

s
v  is 

the frequency-dependent phonon propagation speed, 
r s
τ  is the frequency-dependent 

phonon relaxation time, t denotes the time and 
v s

q  is the external heat generation 

rate related to a unit of volume.  

Using the Debye model, the dependence between phonon energy and lattice 

temperature can be calculated from the following formula 
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where 
D s
Θ  is the Debye temperature of the solid, 

b
k  is the Boltzmann constant, T

s
 

is the lattice temperature while 
s

η  is the number density of oscillators [3]. 

The equations (1) should be supplemented by the boundary and initial 

conditions.  

3. Interval lattice Boltzmann equation  

The lattice Boltzmann method (LBM) is a numerical technique for the simula-

tion of heat transfer. The LBM solves a discretized set of the BTE known as 

the lattice Boltzmann equations. The phonon energy density is defined as the sum  
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where 
1s
e  is the phonon energy density in the positive x direction for s

th
 layer 

while 
2 s
e  is the phonon energy density in the negative x direction and d signifies 

the lattice direction. 

The interval Boltzmann transport equations for the one-dimensional problem 

take the form [13] 
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where /
s s
v x t= ∆ ∆  is the component of velocity along the x-axis, 

s
x∆  is the 

lattice distance from site to site, 1f f
t t t

+

∆ = −  is the time step needed for a phonon 

to travel from one lattice site to the neighboring lattice site, ,

r s r s r s

− + τ = τ τ   is the 

interval relaxation time and 0
( , ) /

d s s
e e x t d= . 

The set of equations (4) must be supplemented by the boundary-initial condi-

tions [6, 9] 
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where 
1b
T  and 

2b
T  are the interval boundary temperatures and 

0 s
T  is the initial 

temperature. Between the successive sub-domains the continuity condition can be 

taken into account [9] 
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The interval LBM algorithm has been used to solve the problem analysed 

[6, 10]. The approximate form of the equations (4) is of the following form 
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Taking into account the assumption that 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

/ , / , ,

/

/ , / , ,

b a b a

b b b b

a b a b a b \

a b

a b a b a b \

−σ −σ σ σ

−σ σ σ σ

  ∈
 

= 
  ∈ ∈ 

D

D Z

Z D Z

 (8) 



A. Piasecka Belkhayat, A. Korczak 60 

and 
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the product ( )01
f

r s s
i

t e∆ τ ⋅  (s = 1, i = 3, f = 4) is calculated using the rules of 

directed interval arithmetic according to the following formula  
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As a result, the interval obtained is improper.  

After subsequent computations the interval lattice temperature is determined 

using the formula (see eq. (2))  
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4. Results of computations 

As a numerical example, the heat transport in a silicon-diamond film of the 

dimension  L = 200 nm has been analysed. The following input data have been 

introduced for a silicon-diamond film respectively: [ ]1
6.37, 6.69 ps

r
τ = , 

[ ]2
20.38, 21.42 ps

r
τ = , 

1
640 K

D
Θ = , 

2
2200 K

D
Θ = , 

1
[575, 615]K

b
T = , 

2
[292.5, 307.5]K

b
T = , 

0
300 K

s
T = , 

3
0 W/m

v s
q = , 20 nm

s
x∆ =  and 5pst∆ = .  

Figure 1 illustrates the interval temperature distribution in the domain consid-

ered for the chosen times. Figure 2 presents the courses of the temperature function 

at the internal nodes 
1
60x =  nm (1) and 

2
160x =  nm (2) for the silicon and 

diamond layer respectively.  
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Fig. 1. The interval temperature distribution 

In the second analysed example it is assumed that the external heat 
 

generation rate related to an unit of volume is the interval number 
18 18 3

0.975 10 , 1.025 10 W/m .
v s

q  = ⋅ ⋅    
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Fig. 2. The interval heating curves at internal nodes 
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Similar to the previous example, Figure 3 illustrates the interval temperature 

distribution in the domain considered for the chosen times, and Figure 4 presents 

the courses of the temperature function at the same internal nodes.  
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Fig. 3. The interval temperature distribution 
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Fig. 4. The interval heating curves at internal nodes 
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Fig. 5. The interval temperature distribution 
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Fig. 6. The interval heating curves at internal nodes 

In the last numerical example, accurate boundary temperatures 
1

600 K
b
T =  and 

2
300 K

b
T =  have been introduced. In Figure 5, the interval temperature distribu- 

tion in the domain considered for the chosen times are shown and Figure 6 presents 

the courses of the temperature function at the same internal nodes.  
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It should be pointed out, that for each node of the domain considered there are 

two curves representing the beginning and end of temperatures intervals. The inter-

val solution is illustrated by the area between these two curves.  

Additionally one can see, that for longer  calculation time, the temperature inter- 

vals are wider (see Figs. 2, 4 and 6). It is visible that a greater number of operations 

in the set of interval numbers impacts on the increase of the width of the obtained 

intervals.  

5. Conclusions  

In the paper a interval version of the lattice Boltzmann method for solving 1D 

problems in two-layered crystalline solid films has been presented. A model with 

interval values of relaxation times, boundary conditions and the external heat 

generation rate related to a unit of volume for a silicon-diamond film has been 

proposed.  

The generalization of LBM allows one to find the numerical solution in the in-

terval form, and such information may be important, especially for the parameters 

that are estimated experimentally, for example the relaxation time. The problem 

analysed can be extended to multi-layered thin films.  
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