PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fusing multiple open-source remote sensing data to estimate PM2.5 and PM10 monthly concentrations in Croatia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study is to create a methodology for accurately estimating atmospheric concentrations of PM2.5 and PM10 using Sentinel-5P and other open-source remote sensing data from the Google Earth Engine (GEE) platform on a monthly basis for June, July and August which are considered as months of non-heating season in Croatia, and December, January and February, which, on the other hand, are considered as months of the heating season. Furthermore, machine learning algorithms were employed in this study to build models that can accurately identify air quality. The proposed method uses open-source remote sensing data accessible on the GEE platform, with in-situ data from Croatian National Network for Continuous Air Quality Monitoring as ground truth data. A common thing for all developed monthly models is that the predicted values slightly underestimate the actual ones and appear slightly lower. However, all models have shown the general ability to estimate PM2.5 and PM10 levels, even in areas without high pollution. All developed models show moderate to high correlation between in-situ and estimated PM2.5 and PM10 values, with overall better results for PM2.5 than for PM10 concentrations. Regarding PM2.5 models, the model with the highest correlation (r = 0.78) is for January. The PM10 model with the highest correlation (r = 0.79) is for December. All things considered, developed models can effectively detect all PM2.5 and PM10 hotspots.
Czasopismo
Rocznik
Strony
59--77
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Sapienza University of Rome, Department of Civil, Building and Environmental Engineering, Rome, Italy
  • Eskisehir Technical University, Institute of Earth and Space Sciences, Eskisehir, Turkey
  • University of Zagreb, Faculty of Geodesy, Chair of Photogrammetry and Remote Sensing, Zagreb, Croati
Bibliografia
  • 1. Air Pollution, URL 1: https://www.who.int/health-topics/air-pollution#tab=tab_1 [27.10.2022].
  • 2. Anderson J.O., Thundiyil J.G., Stolbach A. (2012). Clearing the air: a review of the effects of particulate matter air pollution on human health. Journal of medical toxicology, 8(2), 166-175.
  • 3. Borsdorff T., Hu H., Hasekamp O., Sussmann R., Rettinger M., Hase F., ... & Landgraf, J. (2018). Mapping carbon monoxide pollution from space down to city scales with daily global coverage. Atmospheric Measurement Techniques, vol. 11, no. 10, pp. 5507-5518.
  • 4. Cichowicz R., Wielgosiński G., Fetter, W. (2017). Dispersion of atmospheric air pollution in summer and winter season. Environmental monitoring and assessment, 189(12), 1-10.
  • 5. Clemente Á., Yubero E., Nicolás J. F., Caballero S., Crespo J., Galindo N. (2022). Changes in the concentration and composition of urban aerosols during the COVID-19 lockdown. Environmental Research, 203, 111788.
  • 6. Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S., Shimada J., Umland J., Werner M., Oskin M., Burbank D., and Alsdorf, D.E. (2007). The shuttle radar topography mission: Reviews of Geophysics, vol. 45, no. 2, RG2004, https://doi.org/10.1029/2005RG000183).
  • 7. Gautam S., Elizabeth J., Gautam A. S., Singh K., Abhilash P. (2022). Impact Assessment of Aerosol Optical Depth on Rainfall in Indian Rural Areas. Aerosol Science and Engineering, 1-11.
  • 8. GFS: Global Forecast System 384-Hour Predicted Atmosphere Data, URL 3: https://developers.google.com/earth-engine/datasets/catalog/NOAA_GFS0P25#description [27.10.2022].
  • 9. Han S., Kundhikanjana W., Towashiraporn P., Stratoulias D. (2022). Interpolation-Based Fusion of Sentinel-5P, SRTM, and Regulatory-Grade Ground Stations Data for Producing Spatially Continuous Maps of PM2. 5 Concentrations Nationwide over Thailand. Atmosphere, 13(2), 161.
  • 10. Hengl T. (2018). Soil pH in H2O at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution (Version v02) [Data set].
  • 11. Kaplan G., Avdan Z.Y. (2020). Space-borne air pollution observation from sentinel-5p tropomi: Relationship between pollutants, geographical and demographic data. International Journal of Engineering and Geosciences, 5(3), 130-137.
  • 12. Kelly F.J., Fussell J.C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric environment, 60, 504-526.
  • 13. Kim K.H., Kabir E., Kabir S. (2015). A review on the human health impact of airborne particulate matter. Environment international, 74, 136-143.
  • 14. Kleipool Q., Ludewig A., Babić L., Bartstra R., Braak R., Dierssen W., ... & Veefkind P. (2018). Pre-launch calibration results of the TROPOMI payload on-board the Sentinel-5 Precursor satellite. Atmospheric Measurement Techniques, vol. 11, no. 12, pp. 6439-6479.
  • 15. Kumar R.P., Perumpully S.J., Samuel C., Gautam S. (2022). Exposure and health: A progress update by evaluation and scientometric analysis. Stochastic Environmental Research and Risk Assessment, 1-13.
  • 16. Kumar R.P., Samuel C., Gautam S. (2022). A bibliometric and scientometric: analysis towards global pattern and trends related to aerosol and precipitation studies from 2002 to 2022. Air Quality, Atmosphere & Health, 1-16.
  • 17. Kvaliteta zraka u Republici Hrvatskoj (Air quality in the Republic of Croatia), URL 2: http://iszz.azo.hr/iskzl/index.html [27.10.2022].
  • 18. Li T., Shen H., Yuan Q., Zhang L. (2020). Geographically and temporally weighted neural networks for satellite-based mapping of ground-level PM2. 5. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 178-188.
  • 19. Li Y., Yuan S., Fan S., Song Y., Wang Z., Yu Z., ... & Liu Y. (2021). Satellite Remote Sensing for Estimating PM2. 5 and Its Components. Current Pollution Reports, 7(1), 72-87.
  • 20. Pal M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
  • 21. Polichetti G., Cocco S., Spinali A., Trimarco V., & Nunziata A. (2009). Effects of particulate matter (PM10, PM2. 5 and PM1) on the cardiovascular system. Toxicology, 261(1-2), 1-8.
  • 22. Pope III C.A., Dockery D.W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the air & waste management association, 56(6), 709-742.
  • 23. Shao Y., Ma Z., Wang J., Bi J. (2020). Estimating daily ground-level PM2. 5 in China with random-forest-based spatiotemporal kriging. Science of The Total Environment, 740, 139761.
  • 24. Singh R., Singh V., Gautam A.S., Gautam S., Sharma M., Soni P. S., ... & Gautam A. (2022). Temporal and Spatial Variations of Satellite-Based Aerosol Optical Depths, Angstrom Exponent, Single Scattering Albedo, and Ultraviolet-Aerosol Index over Five Polluted and Less-Polluted Cities of Northern India: Impact of Urbanization and Climate Change. Aerosol Science and Engineering, 1-19.
  • 25. Stafoggia M., Bellander T., Bucci S., Davoli M., De Hoogh K., De'Donato F., ... & Schwartz J. (2019). Estimation of daily PM10 and PM2. 5 concentrations in Italy, 2013-2015, using a spatiotemporal land-use random-forest model. Environment international, 124, 170-179.
  • 26. Understanding Random Forest, URL 4: https://towardsdatascience.com/understanding-random-forest-58381e0602d2 [27.10.2022].
  • 27. Wang Y., Yuan Q., Li T., Tan S., Zhang, L. (2021). Full-coverage spatiotemporal mapping of ambient PM2.5 and PM10 over China from Sentinel-5P and assimilated datasets: Considering the precursors and chemical compositions. Science of The Total Environment, 793, 148535.
  • 28. Witten I.H., Frank E., Trigg L.E., Hall M.A., Holmes G., Cunningham S.J. (1999). Weka: Practical machine learning tools and techniques with Java implementations.
  • 29. Xiao Q., Ma Z., Li S., Liu Y. (2015). The impact of winter heating on air pollution in China. PloS one, 10(1), e0117311.
  • 30. Yang L., Xu H., Yu S. (2020). Estimating PM2. 5 concentrations in Yangtze River Delta region of China using random forest model and the Top-of-Atmosphere reflectance. Journal of Environmental Management, 272, 111061.
  • 31. Zhao C., Wang Q., Ban J., Liu Z., Zhang Y., Ma R., ... & Li, T. (2020). Estimating the daily PM2. 5 concentration in the Beijing-Tianjin-Hebei region using a random forest model with a 0.01°× 0.01° spatial resolution. Environment international, 134, 105297.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dcd50dff-a56a-4ab7-be5e-55cef821c8d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.