PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of Titanium Related Inclusions in Casting of Steel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The general area of understanding is inclusions in steel both metallic and nonmetallic in nature. This work has also used the concepts of inclusions in steel in general other than Ti however mainly the research works done on precipitation, solute segregation, grain developments and equilibrium aspects of important inclusions like Ti in steel have been probed. Interaction of inclusions with slag oxides has also been incorporated. Interdependence of elements common in-between many inclusions has been marked. TiN, TixOy and MnS inclusions have been very outstanding in the confines of present research. Ratios and effective concentration have been highlighted in certain cases around the topic. Type of steels, compositions of the constituent elements and temperature correlation has been spotted in certain environments. A suggestive relation with the steel properties has also been inferred. Hardness, corrosion behaviour and strength stand out to be the parameters of vital importance when considering Ti inclusions in the form of either TiN or TixOy. Certain inclusions like MnS seem to nucleate on TiN inclusions and there is a correlation evident certainly in case of complex alloys.
Rocznik
Strony
127--136
Opis fizyczny
Bibliogr. 41 poz., il., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Cracow, Poland
Bibliografia
  • [1] Podorska, D. & Wyparowicz, J. (2008). Thermodynamic analysis of elementary processes in molten oxide steel reduction. Achieves of Metallurgy and Materials. 53(2), 595-600.
  • [2] Jung, I.H., Decterov, S. & Pelton, A.D. (2004). A thermodynamic model of deoxidation equilibria in steel. Metallurgical and material transactions B. 35, 493-507. https://doi.org/10.1007/s11663-004-0050-4.
  • [3] Narita, K. (1974). Physical chemistry of rare earth and group IV and V as elements. Central Laboratory, Kobe Steel.
  • [4] Juriani, A. (2015). Casting defects analysis in foundry and their remedial measures with industrial case studies. IOSR Journal of Mechanical and Civil Engineering. 12(6), 43-53. DOI: 10.9790/1684-12614354.
  • [5] Fawkhry, M. (2021). Modified Hadfield steel for casting of high and low gouging applications. International Journal of Metalcasting. 15(2), 613-624. https://doi.org/10.1007/s40962-020-00492-5.
  • [6] Kim, W., Kang, J., Park, C., Lee, J.B. & Pak, J.J. (2007). Thermodynamics of aluminum, nitrogen and AlN formation in liquid iron. ISIJ International. 47(7), 945-954. https://doi.org/10.2355/isijinternational.47.945.
  • [7] Dang, J. & Chou, K.A (2018). A model for the reduction of metal oxides by carbon monoxide. ISIJ International. 58(4), 585-593. DOI: 10.2355/isijinternational.ISIJINT-2017-630.
  • [8] Narita, K. (1975). Physical chemistry of the groups IVa (Ti, Zr), Va (V, Nb, Ta) and the Rare Earth Elements in Steel. Transactions ISIJ. 15, 145-152.
  • [9] Podorska, D. & Wypartowicz, J. (2008). Thermodynamic analysis of elementary processes in molten oxide slag reduction. Archives of Metallurgy and Materials. 53(2), 595–600.
  • [10] Michelic, S.K. & Bernhard, C. (2017). Experimental study on the behavior of TiN and Ti2O3 inclusions in contact with CaO-Al2O3-SiO2-MgO slags. Sccanning. 2017(2326750), 1-14. https://doi.org/10.1155/2017/2326750.
  • [11] Descotes, V., Bellot, J-P., Perrin-Guérin, V., Witzke, S. & Jardy, A. (2016). Titanium nitride ( TiN ) precipitation in a maraging steel during the vacuum arc remelting ( VAR ) process - Inclusions characterization and modeling. IOP Conference Series: Materials Science and Engineering. 143, 012013. DOI:10.1088/1757-899X/143/1/012013.
  • [12] Cresson, E. Technical Steel Research-Fundamental studies related to the mechanisms of inclusion removal from steel. ISSN 1018-5593, 1998.
  • [13] Aizenshtein, M., Froumin, N. & Frage, N. (2014). Experimental study and thermodynamic analysis of high temperature interactions between boron carbide and liquid metals. Engineering. 6(13), 849-868. DOI: 10.4236/eng.2014.613079.
  • [14] Vieira, R., Biehl, L.V., Luis, J., Medeiros, B., Costa, V.M. & Macedo, R.J. (2021). Evaluation of the characteristics of an AISI 1045 steel quenched in different concentration of polymer solutions of polyvinylpyrrolidone. Scientific Reports. 11(1), 1-8. https://doi.org/10.1038/s41598-020-79060-0.
  • [15] Yin, XUE, Sun, Y., Yang, Y., Bai, X., Barati, M. & Mclean, A. (2016). Formation of inclusions in Ti-stabilized 17Cr Austenitic Stainless Steel. Metallurgical and Materials Transactions B. 47(6), 3274-3284. DOI: 10.1007/s11663-016-0681-2.
  • [16] Liu, Y., Zhang, L., Duan, H., Zhang, Y., Luo, Y.A.N. & Conejo, A.N. (2016). Extraction, thermodynamic analysis , and precipitation mechanism of MnS-TiN complex inclusions in low-sulfur steels. Metallurgical and Materials Transactions A. 47(6), 3015-3025. DOI: 10.1007/s11661-016-3463-1.
  • [17] El-Faramawy, H.S., Ghali, S.N. & Eissa, M.M. (2012). Effect of titanium addition on behavior of medium carbon steel. Journal of Minerals and Materials Characterization and Engineering. 11, 1108-1112.
  • [18] Sivaramakrishnan, B. & Nadarajan, M.A (2014). Study on microhardness , microstructure and wear properties of plasma transferred arc hardfaced structural steel with titanium carbide. Journal of Minerals and Materials Characterization and Engineering. 2(3), 160-168. DOI: 10.4236/jmmce.2014.23020.
  • [19] Ghali, S., Eissa, M. & Mishreky, M. (2018). Some features of the influence of titanium and nitrogen addition to NiCrMoV steel. Journal of Minerals and Materials Characterization and Engineering. 6(2), 203-217. DOI: 10.4236/jmmce.2018.62015.
  • [20] Piloyan, G.O., Bortnikov, N.S. & Boeva, N.M. (2013). The determination of surface thermodynamic properties of nanoparticles by thermal analysis. Journal of Modern Physics. 4(7B), 16-21. http://dx.doi.org/10.4236/jmp.2013.47A2003.
  • [21] Lei, J., Zhao, D. & Jiang, Y. (2018). Research on the solid solution behavior of titanium inclusion for the high strength tire cord steel. Journal of Surface Engineered Materials and Advanced Technology. 8(3), 49-57. DOI: 10.4236/jsemat.2018.83005.
  • [22] Li, C. & Thomas, B.G. (2004). Thermomechanical finite-element model of shell behavior in continuous casting of steel. Metallurgical and Materials Transactions B. 35, 1151-1175. https://doi.org/10.1007/s11663-004-0071-z.
  • [23] Asadian, M. (2013). Thermodynamic analysis of ZnO crystal growth from the melt. Journal of Crystallization Process and Technology. 3(3), 75-80. DOI: 10.4236/jcpt.2013.33012.
  • [24] Hedaiatmofidi, H., Sabour, A., Aghdam, R. & Ahangarani, S. (2014). Deposition of Titanium layer on steel substrate using PECVD method : a parametric study. Materials Sciences and Applications. 5(3), 140-148. DOI: 10.4236/msa.2014.53018.
  • [25] Singh, B.P., Kumar, J., Jha, I.S. & Adhikari, D. (2011). Concentration dependence of thermodynamic properties of NaPb liquid alloy. World Journal of Condensed Matter Physics. 1(3), 97-100. DOI: 10.4236/wjcmp.2011.13015.
  • [26] Mishra, K.K., Limbu, H.K., Dhungana, A., Jha, I.S. & Adhikari, D. (2018). Thermodynamic, Structural , surface and transport properties of In-Tl liquid alloy at different temperatures. World Journal of Condensed Matter Physics. 8(3), 91-108. DOI: 10.4236/wjcmp.2018.83006.
  • [27] Tang, H.Y., Wang, Y., Wu, T., Li, J.S. & Yang, S.F. (2017). Characteristics analysis of inclusion of 60Si2Mn – Cr spring steel via experiments and thermodynamic calculations. Ironmaking & Steelmaking. 44(5), 1-12. DOI: 10.1080/03019233.2016.1212563.
  • [28] Spreitzer, D. & Schenk, J. (2019). Reduction of iron oxides with hydrogen — a review. Steel Research International. 190(1900108) 1-7. DOI: 10.1002/srin.201900108.
  • [29] Yu, C., Wang, H., Gao, X. & Wang, H. (2020). Effect of Ti microalloying on the corrosion behavior of low-carbon steel in H2S/CO2 environment. Journal of Materials Engineering and Performance. 29(9), 6118-6129. DOI: 10.1007/s11665-020-05077-1.
  • [30] Liu, Z., Gao, X., Du, L., Li, J., Zheng, C. & Wang, X. (2018). Corrosion mechanism of low-alloy steel used for flexible pipe in vapor-saturated H2S/CO2 and H2S/CO2-saturated brine conditions. Materials and Corrosion. 69(9), 1180-1195. DOI: 10.1002/maco.201810047.
  • [31] Palumbo, G., Banaś, J., Bałkowiec, A., Mizera, J., Lelek-Borkowska, U. (2014). Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid. Journal of Solid State Electrochemistry. 18(11), 2933-2945. DOI: 10.1007/s10008-014-2430-2.
  • [32] Liu, Z.G., Gao, X.H. Du, L.X., Li, J.P., Li, P. & Misra, R.D.K. (2017). Comparison of corrosion behaviors of low-alloy steel exposed to vapor-saturated H2S/CO2 and H2S/CO2-saturated brine environments. Materials and Corrosion. 68(5), 566-579. https://doi.org/10.1002/maco.201609165.
  • [33] Rozenfeld, I.L. (1981). Corrosion Inhibitors. New York: McGraw-Hill.
  • [34] Palumbo, G., Kollbek, K., Wirecka, R., Bernasik, A., & Górny, M. (2020). Effect of CO2 partial pressure on the corrosion inhibition of N80 carbon steel by gum arabic in a CO2-water saline environment for shale oil and gas industry. Materials.13(19), 4245, 1-24. DOI:10.3390/ma13194245.
  • [35] Bai, H., Wang, Y., Ma, Y., Zhang, Q. & Zhang, N. (2018). Effect of CO2 partial pressure on the corrosion behavior of J55 carbon steel in 30% crude oil/brine mixture. Materials. 11(9), 1765, 1-15. DOI:10.3390/ma11091765.
  • [36] Cui, L., Kang, W., You, H., Cheng, J. & Li, Z. (2020). Experimental study on corrosion of J55 casing steel and N80 tubing steel in high pressure and high temperature solution containing CO2 and NaCl. Journal of Bio- and Tribo-Corrosion. 7(1), 1-14. https://doi.org/10.1007/s40735-020-00449-5.
  • [37] Islam, M.A. & Farhat, Z.N. (2015). Characterization of the corrosion layer on pipeline steel in sweet environment. Journal of Materials Engineering and Performance. 24(8), 3142-3158. DOI: 10.1007/s11665-015-1564-4.
  • [38] Alberto, J., Avalos, M., Schell, N., Brokmeier, H.G. & Bolmaro, R.E. (2021). Comparison of a low carbon steel processed by Cold Rolling ( CR ) and Asymmetrical Rolling (ASR): Heterogeneity in strain path , texture , microstructure and mechanical properties. Journal of Manufacturing Processes. 64, 557-575. https://doi.org/10.1016/j.jmapro.2021.02.017.
  • [39] Hotz, H. & Kirsch, B. (2020). Influence of tool properties on thermomechanical load and surface morphology when cryogenically turning metastable austenitic steel AISI 347. Journal of Manufacturing Processes. 52, 120-131. DOI: 10.1016/j.jmapro.2020.01.043.
  • [40] Burke, J.J., Weiss, V. (1974). Advances in Deformation Processing. New York: Plenum Press.
  • [41] Bernardo, L., Tressia, G., Masoumi, M., Mundim, E., Regattieri, C. & Sinatora, A. (2021). Roller crushers in iron mining, how does the degradation of Hadfield steel components occur ? Engineering Failure Analysis. 122, 105295. DOI:10.1016/j.engfailanal.2021.105295.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dcd3f327-aa74-4224-afab-3a55109b5c43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.