PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forming of rail car axles in a CNC skew rolling mill

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study relates to an innovative method for forming rail car axles by skew rolling in a CNC 3-roll mill. The rolling mill was constructed at the Lublin University of Technology. The use of this machine makes it possible to produce elongated axisymmetric parts that are up to 55 mm in diameter and up to 1000 mm in length. Experimental rolling tests are performed (in 1:5 scale) using this machine. Two types of axles are analysed: one manufactured in accordance with North American standards (AAR Class E) and one manufactured in compliance with European standards (BA302). Diameters of produced axles have a dimensional accuracy of ± 0.4 mm. Produced axles are free from internal cracks, and their surface defects (shallow helical grooves) can easily be removed by machining. The major shortcoming of the proposed method is the presence of chucking allowance. To eliminate this allowance, it is proposed that the forming process should be performed in two operations: rolling extrusion and skew rolling. Results of a numerical analysis were performed using the Simufact.Forming program confirms that rail car axles can be formed by the proposed method.
Rocznik
Strony
78--90
Opis fizyczny
Bibliogr. 35 poz., fot., rys., wykr.
Twórcy
  • Lublin University of Technology, 36 Nadbystrzycka Str, 20‑618 Lublin, Poland
  • Lublin University of Technology, 36 Nadbystrzycka Str, 20‑618 Lublin, Poland
autor
  • Lublin University of Technology, 36 Nadbystrzycka Str, 20‑618 Lublin, Poland
autor
  • Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, People’s Republic of China
Bibliografia
  • [1] Shu X, Wei X, Li C, Hu Z. The influence rules of stress about technical parameters on synchronous rolling railway axis with multiwedge cross-wedge rolling. Appl Mech Mater. 2010;37–38:1482–8. https ://doi.org/10.4028/www.scien tific .net/AMM.37-38.1482.
  • [2] Xu C, Shu X. Influence of process parameters on the forming mechanics parameters of the three-roll skew rolling forming of the railway hollow shaft with 1:5. Metalurgija. 2018;57(3):153–6.
  • [3] Kozevnikova GW, Pipipcuk GP, Rudovic AO, Schukin VJA. Progressive method of production of raw railway axles. Tech Zeleznych Dorog. 2017;40(4):31–7 (in Russian).
  • [4] Gronostajski Z, Pater Z, Madej L, Gontarz A, Lisiecki L, Łukaszek-Sołek A, et al. Recent development trends in metal forming. Arch Civ Mech Eng. 2019;19(3):898–941. https ://doi.org/10.1016/j.acme.2019.04.005.
  • [5] Ji H, Liu J, Wang B, Fu A, Xiao W, Hu Z. A new method for manufacturing hollow valves via cross wedge rolling and forging: numerical analysis and experiment validation. J Mater Process Tech. 2017;240:1–11. https ://doi.org/10.1016/j.jmatp rotec.2016.09.004.
  • [6] Pater Z. Cross wedge rolling. In: Button ST, editor. Comprehensive materials processing, vol. 3. New Work: Elsevier Ltd.; 2014. p. 211–279.
  • [7] Peng W, Zheng S, Chiu Y, Shu X, Zhan L. Multi-wedge cross wedge rolling process of 42CrMo4 Large and Long Hollow Shaft. Rare Metal Mat Eng. 2016;45(4):836–42. https ://doi.org/10.1016/S1875 -5372(16)30084 -4.
  • [8] Zheng S, Shu X, Han S, Yu P. Mechanism and force-energy parameters of a hollow shaft’s multi-wedge synchrostep crosswedge rolling. J Mech Sci Technol. 2019;33(5):1–10. https ://doi.org/10.1007/s1220 6-019-0411-1.
  • [9] Pater Z, Tomczak J. A new cross wedge rolling process for producing rail axles. MATEC Web Conf. 2018;190:11006. https ://doi.org/10.1051/matec conf/20181 90110 06.
  • [10] Pater Z, Tomczak J, Bulzak T. Numerical analysis of the skew rolling process for rail axles. Arch Metall Mater. 2015;60(1):415–8. https ://doi.org/10.1515/amm-2015-0068.
  • [11] Pater Z. FEM analysis of loads and torque in a skew rolling process for producing axisymmetric parts. Arch Metall Mater. 2017;62(1):85–90. https ://doi.org/10.1515/amm-2017-0011.
  • [12] Pater Z, Tomczak J, Bulzak T. Numerical analysis of the skew rolling process for main shaft. Metalurgija. 2015;54(4):627–30.
  • [13] Pater Z, Tomczak J, Bulzak T. Numerical analysis of a skew rolling process for producing a stepped hollow shaft made of titanium alloy Ti6Al4V. Arch Metall Mater. 2016;61(2):677–82. https ://doi.org/10.1515/amm-2016-0115.
  • [14] Wei J, Shu X, Tian D, et al. Study in shaft end forming quality of closed-open cross wedge rolling shaft using a wedge block. Int J Adv Manuf Technol. 2017;93(1–4):1095–105. https ://doi.org/10.1007/s0017 0-017-0507-7.
  • [15] Pater Z, Tomczak J, Bulzak T. Cavity formation in cross-wedge rolling processes. J Iron Steel Res Int. 2019;26(1):1–10. https ://doi.org/10.1007/s4224 3-018-0075-6.
  • [16] Yang C, Dong H, Hua Z. Micro-mechanism of central damage formation during cross wedge rolling. J Mater Process Tech. 2018;252:322–32. https ://doi.org/10.1016/j.jmatp rotec.2017.09.041.
  • [17] Pater Z, Tomczak J, Bulzak T. Establishment of a new hybrid fracture criterion for cross wedge rolling. Int J Mech Sci. 2020;167:105274. https ://doi.org/10.1016/j.ijmec sci.2019.105274.
  • [18] Huang H, Chen X, Fan B, Jin Y, Shu X. Initial billet temperature influence and location investigation on tool wear in cross wedle rolling. Int J Adv Manuf Tech. 2015;79:1545–56. https ://doi.org/10.1007/s0017 0-015-6882-z.
  • [19] Tofil A, Tomczak J, Bulzak T. Numerical and experimental study on producing aluminum alloy 6061 shafts by cross wedge rolling using a universal rolling mill. Arch Metall Mater. 2015;60(2):801–7. https ://doi.org/10.1515/amm-2015-0210.
  • [20] Pater Z, Tomczak J, Bulzak T. Cross-wedge rolling of driving shaft from titanium alloy Ti6Al4V. Key Eng Mat. 2016;687:125–32. https ://doi.org/10.4028/www.scien tific .net/KEM.687.125.
  • [21] Lis K, Wójcik Ł, Pater Z. Numerical analysis of a skew rolling process for producing a crankshaft preform. Open Eng. 2016;6:581–4. https ://doi.org/10.1515/eng-2016-0087.
  • [22] Pater Z, Tomczak J, Bartnicki J, Lovell MR, Menezes PL. Experimental and numerical analysis of helical-wedge rolling process for producing steel balls. Int J Mach Tool Manu. 2013;67:1–7. https://doi.org/10.1016/j.ijmac htool s.2012.12.006.
  • [23] Tomczak J, Pater Z, Bulzak T. Designing of screw impressions in helical rolling of balls. Arch Civ Mech Eng. 2014;14:104–13. https ://doi.org/10.1016/j.acme.2013.07.004.
  • [24] Cao Q, Hua L, Qian D. Finite element analysis of deformation characteristics in cold helical rolling of bearing steel-balls. J Cent South Univ. 2015;22:1175–83. https ://doi.org/10.1007/s11771-015-2631-6.
  • [25] Berti GA, Quagliato L, Monti M. Set-up of radial–axial ring-rolling process: process worksheet and ring geometry expansion prediction. Int J Mech Sci. 2015;99:58–71. https ://doi.org/10.1016/j.ijmec sci.2015.05.004.
  • [26] Quagliato L, Berti GA. Mathematical definition of the 3D strain field of the ring in the radial-axial ring rolling process. Int J Mech Sci. 2016;115–116:746–59. https ://doi.org/10.1016/j.ijmecsci.2016.07.009.
  • [27] Quagliato L, Berti GA, Kim D, et al. Contact geometry estimation and precise radial force prediction for the radial-axial ring rolling process. Int J Mater Form. 2018;11:789–805. https ://doi.org/10.1007/s1228 9-017-1388-x.
  • [28] Bartnicki J, Pater Z, Gontarz A. Theoretical analysis of rollingextrusion process of axi-symmetrical parts. Arch Civ Mech Eng. 2008;8(2):5–11. https ://doi.org/10.1016/S1644 -9665(12)60188 -5.
  • [29] Neugebauer R, Kolbe M, Glab R, Hoffmann M. Optimisation of processing routes for cross rolling and spin extrusion. J Mater Process Tech. 2002;125–126:856–62. https ://doi.org/10.1016/S0924-0136(02)00392 -8.
  • [30] Neugebauer R, Kolbe M, Glab R. New warm forming processes to produce hollow shafts. J Mater Process Tech. 2001;119:277–82.https ://doi.org/10.1016/S0924 -0136(01)00939 -6.
  • [31] Yang C, Zhang K, Hu Z. Development of central minute cavity in the workpiece of cross wedge rolling. Appl Mech Mater. 2012;215–216:766–70. https ://doi.org/10.4028/www.scien tific.net/AMM.215-216.766.
  • [32] Yang C, Dong H, Hu Z. Micro-mechanism of central damage formation during cross wedge rolling. J Mater Process Techn. 2018;252:322–32. https ://doi.org/10.1016/j.jmatp rotec .2017.09.041.
  • [33] Pater Z, Tomczak J, Bulzak T, Wójcik Ł, Walczuk P. Assessment of ductile fracture criteria with respect to their application in the modeling of cross wedge rolling. J Mater Process Techn. 2020;278:116501. https ://doi.org/10.1016/j.jmatp rotec .2019.11650 1.
  • [34] Pater Z, Walczuk P, Lis K, Wójcik Ł. Preliminary analysis of a rotary compression test. Adv Sci Technol Res J. 2018;12(2):77–82. https ://doi.org/10.12913 /22998 624/86812.
  • [35] Pater Z, Tomczak J, Bulzak T, Bartnicki J, Tofil A. Prediction of crack formation for cross wedge rolling of harrow tooth preform. Materials. 2019;12:2287. https ://doi.org/10.3390/ma121 42287 .
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dcd0b697-b040-4da6-8fb8-77c79d1ee170
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.