PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effects of season and processing technology on the abundance of antibiotic resistance genes in air samples from municipal wastewater treatment and waste management plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to perform a qualitative and a quantitative assessment of the prevalence of genes encoding resistance to beta-lactam, tetracycline, and chloramphenicol antibiotics in samples of DNA isolated from air in a municipal wastewater treatment plant (WWTP) and a municipal waste management plant (WMP). Air samples were collected in the mechanical (MP) and biological (BP) processing units of WWTP and WMP in winter and spring. The samples of air were collected by impingement into PBS solution and subsequently, DNA was isolated. The prevalence of the 16S rRNA gene and ARGs was determined by PCR, and the most abundant ARGs were quantified by qPCR. The highest diversity of the analyzed ARGs was noted in air samples collected in the mechanical processing units of the WWTP (winter) and the WMP (spring). The copy of ARGs varied between treatment units and seasons. ARGs were most abundant in air samples collected in spring in the MP units of both the WWTP and the WMP. The study demonstrated that ARGs are ubiquitous in the air in both WWTPs and WMPs. The presence of ARGs in the air can exert a negative impact on the health of plant employees.
Rocznik
Strony
101--114
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 1, 10-720 Olsztyn, Poland
  • Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 1, 10-720 Olsztyn, Poland
  • Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 1, 10-720 Olsztyn, Poland
  • Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 1, 10-720 Olsztyn, Poland
  • Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 1, 10-720 Olsztyn, Poland
Bibliografia
  • [1] KIM K.H., KABIR E., JAHAN S.A., Airborne bioaerosols and their impact on human health, J. Environ. Sci. (China), 2018, 67, 23–35.
  • [2] JONES A.M., HARRISON R.M., The effects of meteorological factors on atmospheric bioaerosol concentrations. A review, Sci. Total Environ., 2004, 326 (1–3), 151–180.
  • [3] GOTKOWSKA-PLACHTA A., FILIPKOWSKA Z., KORZENIEWSKA E., JANCZUKOWICZ W., DIXON B., GOLAS I., SZWALGIN D., Airborne microorganisms emitted from wastewater treatment plant treating domestic wastewater and meat processing industry wastes, Clean-Soil Air Water, 2013, 41 (5), 429–436.
  • [4] CHANG M.W., LEE C.R., HUNG H.F., TENG K.S., HUANG H., CHUANG C.Y., Bioaerosols from a food waste composting plant affect human airway epithelial cell remodeling genes, Int. J. Environ. Res. Public Health, 2014, 11 (1), 337–354.
  • [5] KORZENIEWSKA E., Emission of bacteria and fungi in the air from wastewater treatment plants. A review, Front. Biosci., 2011, 3, 393–407.
  • [6] TOMASI C., LUPI A., Primary and secondary sources of atmospheric aerosol. Atmospheric Aerosols, Wiley, Weinheim, Germany, 2017.
  • [7] PILLAI S.D., RICKE S.C., Bioaerosols from municipal and animal wastes. Background and contemporary issues, Can. J. Microbiol., 2002, 48 (8), 681–696.
  • [8] WOLKOFF P., Indoor air humidity, air quality, and health. An overview, Int. J. Hyg. Environ. Health, 2018, 221 (3), 376–390.
  • [9] HAN Y.P., YANG K.X., YANG T., ZHANG M.Z., LI L., Bioaerosols emission and exposure risk of a wastewater treatment plant with A(2)O treatment process, Ecotox. Environ. Saf., 2019, 169, 161–168.
  • [10] ARIAS C.A., MURRAY B.E., A new antibiotic and the evolution of resistance, N. Eng. J. Med., 2015, 372 (12), 1168–1170.
  • [11] SHARMA V.K., JOHNSON N., CIZMAS L., MCDONALD T.J., KIM H., A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes, Chemosphere, 2016, 150, 702–714.
  • [12] MIRHOSEINI S.H., NIKAEEN M., SHAMSIZADEH Z., KHANAHMAD H., Hospital air. A potential route for transmission of infections caused by beta-lactam-resistant bacteria, Am. J. Infect. Control, 2016, 44 (8), 898–904.
  • [13] OSIŃSKA A., KORZENIEWSKA E., HARNISZ M., FELIS E., BAJKACZ S., JACHIMOWICZ P., NIESTEPSKI S., KONOPKA I., Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment, J. Hazard. Mater., 2020, 381,121221.
  • [14] POTORSKI J., KONIUSZEWSKA I., CZATZKOWSKA M., HARNISZ M., Drug resistance in airborne bacteria isolated from waste management and wastewater treatment plants in Olsztyn, E3S Web of Conferences, 2019, 00066.
  • [15] MUSSON S.E., TOWNSEND T.G., Pharmaceutical compound content of municipal solid waste, J. Hazard. Mater., 2009, 162 (2–3), 730–735.
  • [16] ROGOWSKA J., ZIMMERMANN A., MUSZYŃSKA A., RATAJCZYK W., WOLSKA L., Pharmaceutical Household Waste Practices. Preliminary Findings from a Case Study in Poland, Environ. Manage., 2019, 64 (1), 97–106.
  • [17] YOUNES H.A., MAHMOUD H.M., ABDELRAHMAN M.M., NASSAR H.F., Seasonal occurrence, removal efficiency and associated ecological risk assessment of three antibiotics in a municipal wastewater treatment plant in Egypt, Environ. Nanotechnol. Monit. Manage., 2019, 100239.
  • [18] HAN Z.Y., MA H.N., SHI G.Z., HE L., WEI L.Y., SHI Q.Q., A review of groundwater contamination near municipal solid waste landfill sites in China, Sci. Total Environ., 2016, 569, 1255–1264.
  • [19] SCHLOSSER O., Bioaerosols and health. Current knowledge and gaps in the field of waste management, Detritus, 2019, 5, 111–125.
  • [20] ADHIKARI A., REPONEN T., GRINSHPUN S.A., MARTUZEVICIUS D., LEMASTERS, G., Correlation of ambient inhalable bioaerosols with particulate matter and ozone. A two-year study, Environ. Poll., 2006, 140 (1), 16–28.
  • [21] BURROWS S.M., ELBERT W., LAWRENCE M.G., POSCHL U., Bacteria in the global atmosphere. Part 1. Review and synthesis of literature data for different ecosystems, Atm. Chem. Phys., 2009, 9 (23), 9263–9280.
  • [22] XU S.W., SURA S., ZAHEER R., WANG G., SMITH A., COOK S., OLSON A.F., CESSNA A.J., LARNEY F.J., MCALLISTER T.A., Dissipation of antimicrobial resistance determinants in composted and stockpiled beef cattle manure, J. Environ. Qual., 2016, 45 (2), 528–536.
  • [23] GAO M., QIU T.L., SUN Y.M., WANG X.M., The abundance and diversity of antibiotic resistance genes in the atmospheric environment of composting plants, Environ. Int., 2018, 116, 229–238.
  • [24] DEN BOER E., DEN BOER J., JAROSZYNSKA J., SZPADT R., Monitoring of municipal waste generated in the City of Warsaw, Waste Manage. Res., 2012, 30 (8), 772–780.
  • [25] KOZAJDA A., SZADKOWSKA-STANCZYK I., Selected health complaints, allergic diseases, hygiene behaviors and knowledge of biohazards among workers of waste sorting plants, Medycyna Pracy, 2009, 60 (6), 491–499.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dccfb790-e720-4f03-889f-6540443b1f5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.