PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetics of Corrosion Process in H2SO4 and HNO3 Aqueous Solutions of Lead Free Sn-Ag-Cu Solder Alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of the corrosion resistance of Sn-Ag-Cu alloys in air-saturated aqueous solutions containing NO3-, SO42- ions, whose concentration was equivalent to their contents in acid rains and in concentrations 10 - 100 times higher. The Ag, Cu and Sn concentrations in the corrosive media were determined using the Atomic Absorption Spectrometry. The specific dissolution rate and corrosion current were derived using the a rotating disc technique. The corrosion rate of Sn- Ag-Cu alloys depends on pH of the examined solutions and on the concentration of oxygen near the phase boundary. In the whole range of concentrations of the applied H2SO4 + HNO3 mixtures of acids, the pure Sn was more corrosion resistant than eutectic alloy as well as the near eutectic one, following the sequence: Sn>Sn3.66Ag0.91Cu>3.8Ag0.7Cu.
Słowa kluczowe
Twórcy
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences 25 Reymonta Str., 30-059 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences 25 Reymonta Str., 30-059 Krakow, Poland
  • AGH University of Science and Technology, Fa culty of Materials Science and Ceramics, Al. Mickiewicza 30., 30-059 Kraków, Poland
Bibliografia
  • [1] ‘Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment’, Directive 2002/95/EC , Official Journal of European Union, 13 February 2003.
  • [2] Data Base for Properties of Lead-Free Solder Alloys, version 1.0, Database is a joint project of ELFNET and COST 531 Action.
  • [3] A. Watson, L. Zabdyr, Thermodynamic Approach to Modern Alloy Design, Foundation of Materials Design, Recent Research Developments in Materials Science, Research Signpost, Trivondrum, Kerala Indiá, (2006).
  • [4] V. G. Levich, Physicochemical Hydrodynamice. Presntice_ Hall, New Jersey, N.J. (1962).
  • [5] B. Walna, J. Siepak, Sci. Total. Environ. 239, 173 (1999).
  • [6] A. Sypien, W. Przybylo, J. Mater. Sci. Technol. 26(1), 31 (2010).
  • [7] A. J. Bard L. R. Faulkner, Electrochemical methods, second ed., Wiley, New York (2001).
  • [8] J. O. Bockris, A.K.N. Reddy, Modern Electrochemistry 2, 883 (1977), Plenum press, New York.
  • [9] F. El-Taib Heakal, A. M.Fekry, A. A.Ghoneim, Corros. Sci. 50, 1618 (2008).
  • [10] M. Mori, K. Miura, T. Sasaki, T. Ohtsuka, Corros. Sci. 44, 887 (2002).
  • [11] A.P. Yadav, A. Nishikata, T. Tsuru, J. Electroanal. Chem. 585, 142 (2005).
  • [12] Z. Zembura, A. Fuliński, Electrochim. Acta 10, 859 (1965).
  • [13] J. Guspiel, W. Riesenkampf, Hydrometallurgy 34, 203 (1993).
  • [14] J. Guspiel, Physicochem. Problems Mineral. Proc. 31, 107 (1997).
  • [15] A. Wierzbicka-Miernik, J. Guspiel, L. Zabdyr, Arch. Civ. Mech. Eng. 15, 206 (2015).
  • [16] F. Rosalbino, E. Angelini, G. Zanicchi, R. Marazza, Mater. Chem. Phys 109, 386 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dccb8170-0333-49d8-b3c7-3f4679d3cfaf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.