PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of hydrotechnical structures on forming the tombolo oceanographic phenomenon in Kołobrzeg and Sopot

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The process of global sea level rise is causing several significant changes in the coastal zone. Sea level rise and the frequency, strength and duration of storms are also occurring on the Polish coast. As a result, coastal protection measures, such as man-made engineering structure, are necessary. These engineering structures affect (among others) the marine ecosystem in different ways. Although the presence of such engineering structures can cause changes in the bathymetry of waterbody and the transport of sediments along the basin, it also slows down the erosion of the shoreline. For this reason, comprehensive knowledge of natural conditions, including dynamic and variable factors, is essential in the construction of a hydro-engineering structures. The correct determination of the environmental conditions helps to minimize environmental damage. Prior to interventions on the coast, the issues addressed in the paper should be analysed and studied. In this paper, the influence of shoreline structures on the main factors responsible for the development of tombolo phenomenon is discussed. In addition, the lithological diversity of surface sediments on which the rate of coastal erosion depends, is also discussed. An important element of the work is the descriptions of tombolo in Poland. They contain information on the causes of the phenomenon, as well as about the negative consequences of a disturbance of the hydrodynamic dynamics caused by the structure.
Twórcy
autor
  • Gdynia Maritime University, Gdynia, Poland
autor
  • Gdynia Maritime University, Gdynia, Poland
autor
  • Gdynia Maritime University, Gdynia, Poland
autor
  • Gdynia Maritime University, Gdynia, Poland
Bibliografia
  • 1. Banach, M. (1938– ): Morfodynamika strefy brzegowej zbiornika Włocławek. Polska Akademia Nauk. Instytut Geografii i Przestrzennego Zagospodarowania, Wrocław (1994).
  • 2. Benac, Č., Bočić, N., Ružić, I.: On the origin of both a recent and submerged tombolo on Prvić Island in the Kvarner area (Adriatic Sea, Croatia). Geologia Croatica. 72, 3, 195-203-195–203 (2019). https://doi.org/10.4154/gc.2019.14.
  • 3. Bijker, E.W.: Longshore Transport Computations. Journal of the Waterways, Harbors and Coastal Engineering Division. 97, 4, 687–701 (1971). https://doi.org/10.1061/AWHCAR.0000122.
  • 4. Booij, N., Holthuijsen, L.H., Ris, R.C.: The “Swan” Wave Model for Shallow Water. Presented at the 25th International Conference on Coastal Engineering , Orlando, Florida, United States (1996). https://doi.org/10.1061/9780784402429.053.
  • 5. Burdziakowski, P., Specht, C., Dabrowski, P.S., Specht, M., Lewicka, O., Makar, A.: Using UAV Photogrammetry to Analyse Changes in the Coastal Zone Based on the Sopot Tombolo (Salient) Measurement Project. Sensors. 20, 14, (2020). https://doi.org/10.3390/s20144000.
  • 6. Ceylan, M.A.: General overview of the tombolos on Turkey’s coastlines. World Applied Sciences Journal. 16, 7, 907–914 (2012).
  • 7. Cieślikiewicz, W., Dudkowska, A., Gic-Grusza, G., Jędrasik, J.: Extreme bottom velocities induced by wind wave and currents in the Gulf of Gdańsk. Ocean Dynamics. 67, 11, 1461–1480 (2017). https://doi.org/10.1007/s10236-017-1098-4.
  • 8. Cochran, J.K., Bokuniewicz, H., Yager, P.: Encyclopedia of Ocean Sciences. Academic Press (2019).
  • 9. Cupiał, A., Cieślikiewicz, W.: Characteristics of extreme wind wave events in the Gulf of Gdańsk and associated atmospheric conditions over the Baltic Sea. In: EGU General Assembly Conference Abstracts. p. 20397 (2020).
  • 10. Davis, R.A.J. ed: Coastal Sedimentary Environments. Springer-Verlag, New York (1985). https://doi.org/10.1007/978-1-4612-5078-4.
  • 11. De Mahiques, M.: Tombolo. In: Kennish, M.J. (ed.) Encyclopedia of Estuaries. pp. 713–714 Springer, Dordrecht (2016).
  • 12. Druet, C., Kowalik, Z.: Dynamika morza. Wydawnictwo Morskie, Gdańsk (1970).
  • 13. Dz.U. 2003 nr 67 poz. 621: Ustawa z dnia 28 marca 2003 r. o ustanowieniu programu wieloletniego “Program ochrony brzegów morskich,” http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20030670621, last accessed 2021/04/01.
  • 14. Emil Vahtera, Daniel J. Conley, Bo G. Gustafsson, Harri Kuosa, Heikki Pitkänen, Oleg P. Savchuk, Timo Tamminen, Markku Viitasalo, Maren Voss, Norbert Wasmund, Fredrik Wulff: Internal Ecosystem Feedbacks Enhance Nitrogen-fixing Cyanobacteria Blooms and Complicate Management in the Baltic Sea. AMBIO: A Journal of the Human Environment. 36, 2, 186–194 (2007). https://doi.org/10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2.
  • 15. Gelfenbaum, G.: Coastal Currents. In: Schwartz, M.L. (ed.) Encyclopedia of Coastal Science. pp. 259–260 Springer Netherlands, Dordrecht (2005). https://doi.org/10.1007/1-4020-3880-1_78.
  • 16. Gic-Grusza, G., Dudkowska, A.: Modeling of wind wave induced sediment transport in the coastal zone of polish marine areas (Southern Baltic). In: 2014 IEEE/OES Baltic International Symposium (BALTIC). pp. 1–5 (2014). https://doi.org/10.1109/BALTIC.2014.6887860.
  • 17. Ginzburg, A.I., Bulycheva, E.V., Kostianoy, A.G., Solovyov, D.M.: Vortex dynamics in the southeastern Baltic Sea from satellite radar data. Oceanology. 55, 6,805–813 (2015). https://doi.org/10.1134/S0001437015060065.
  • 18. Goudie, A.: Encyclopedia of Geomorphology. Routledge (2004).
  • 19. Hydrobudowa: Przebudowa wejścia do Portu Kołobrzeg – II etap, https://hydrobudowa.com/pl/realizacje/przebudowa-wejscia-do-portu-kolobrzeg-ii-etap, last accessed 2021/04/01.
  • 20. Jurys, L., Uścinowicz, S.: Naturalne i antropogeniczne czynniki kształtujące procesy geologiczne w pasie polskiego brzegu klifowego. In: Sokołowski, R. (ed.) Ewolucja środowisk sedymentacyjnych regionu Pobrzeża Kaszubskiego. pp. 27–37 Wydział Oceanografii i Geografii Uniwersytetu Gdańskiego (2014).
  • 21. Kim, I.H., Lee, W.D., Shin, S., Kim, J.H., Hur, D.S., Cho, W.C.: Study on Rip Current Generated by Submerged Breakwaters: Field Observation and Numerical Simulation. Journal of Coastal Research. 75, 1, 1352–1356 (2016). https://doi.org/10.2112/SI75-271.1.
  • 22. Łabuz, T.A.: Coastal response to climatic changes : discussion with emphasis on southern Baltic Sea. Landform Analysis. 21, 43–55 (2012).
  • 23. Łabuz, T.A.: Potencjalny wpływ planowanych podwodnych progów wzdłuzbrzegowych i ostróg na zmiany brzegu w Kołobrzegu. Presented at the X Konferencja Geologia i geomorfologia Pobrzeża i Południowego Bałtyku , Slupsk (2012).
  • 24. Łabuz, T.A.: Raport Sposoby Ochrony Brzegów Morskich i ich Wpływ na Środowisko Przyrodnicze Polskiego Wybrzeża Bałtyku. (2013).
  • 25. Lee, S., Kim, H., Park, D., Lim, H.S.: Simulation of tombolo evolution by using CST3D-WA. Vibroengineering PROCEDIA. 12, 196–201 (2017). https://doi.org/10.21595/vp.2017.18673.
  • 26. Lewandowski, A., Weslawski, J.M.: Przyrodnicze uwarunkowania planowania przestrzennego w obszarach morskich. Problemy Ocen Środowiskowych. 2, 45, 61–62 (2009).
  • 27. Łomniewski, K.: Oceanografia fizyczna. Państwowe Wydawnictwo Naukowe, Warszawa (1969).
  • 28. MacMahan, J.H., Thornton, E.B., Reniers, A.J.H.M.: Rip current review. Coastal Engineering. 53, 2, 191–208 (2006). https://doi.org/10.1016/j.coastaleng.2005.10.009.
  • 29. Magar, V.: Sediment transport and morphodynamic modelling for coasts and shallow environments. Earth and Space Science Open Archive. 38 (2019). https://doi.org/10.1002/essoar.10501308.1.
  • 30. Maj, K., Koszelnik, P.: Metody zagospodarowania osadów dennych. Journal of Civil Engineering, Environment and Architecture. 63, 2, 157–169 (2016).
  • 31. Mangor, K., Drønen, N.K., Kærgaard, K.H., Kristensen, S.E.: Shoreline Management Guidelines. DHI Water & Environment, Hørshølm, Denmark (2001).
  • 32. Mapa geologiczna dna Bałtyku - opracowanie komputerowe: https://www.pgi.gov.pl/gdansk/geologia-morza-i-wybrzeza/opracowania/6393-mapa-geologiczna-dna-baltyku.html, last accessed 2020/09/29.
  • 33. Mapy - Urząd Morski w Gdyni: https://mapy.umgdy.gov.pl/, last accessed 2020/09/29.
  • 34. Marsz, A.A., Styszyńska, A.: Sztorm w dniach 13-14 października 2009 roku nad Zachodnią częścią Zatoki Gdańskiej. Prace Wydziału Nawigacyjnego Akademii Morskiej w Gdyni. 25, 45–59 (2010).
  • 35. Massel, S.: Procesy hydrodynamiczne w ekosystemach morskich. Wydawnictwo Uniwersytetu Gdańskiego (2010).
  • 36. Massel, S.R.: Hydrodynamics of Coastal Zones. Elsevier Science (1989).
  • 37. May, V.J., Hansom, J.D.: Coastal Geomorphology of Great Britain. Joint Nature Conservation Committee (Geological Conservation Review) (2003).
  • 38. Miętus, M., Storch, H.: Reconstruction of the wave climate in the Proper Baltic Basin, April1947 - March1988. GKSS (Geesthacht). (1997).
  • 39. Miller, J.K., Rella, A., Williams, A., Sproule, E.: Living Shorelines Engineering Guidelines, https://www.nj.gov/dep/cmp/docs/living-shorelines-engineering-guidelines-final.pdf, last accessed 2020/09/02.
  • 40. Ming, D., Chiew, Y.-M.: Shoreline Changes behind Detached Breakwater. Journal of Waterway, Port, Coastal, and Ocean Engineering. 126, 2, 63–70 (2000). https://doi.org/10.1061/(ASCE)0733-950X(2000)126:2(63).
  • 41. Mitsuyasu, H.: Wave Breaking in the Presence of Wind Drift and Opposed Swell. In: Banner, M.L. and Grimshaw, R.H.J. (eds.) Breaking Waves. pp. 147–153 Springer Berlin Heidelberg, Berlin, Heidelberg (1992).
  • 42. Mojski, J.E.: Morze Bałtyckie jako część szelfu północnoeuropejskiego. Landform Analysis. 9, 208–211 (2008).
  • 43. Mojski, J.E., Dadlez, R., Słowańska, B., Uścinowicz, Sz., Zachowicz, J.: Atlas geologiczny południowego Bałtyku - 1:500 000, (1995).
  • 44. Ostrowski, R., Pruszak, Z.: Wybrane aspekty hydro- i morfodynamiki brzegu południowego Bałtyku w świetle zjawisk klimatycznych. Inżynieria Morska i Geotechnika. 5, 668–677 (2015).
  • 45. Otto, J.-C., Smith, M.J.: Geomorphological mapping. In: Cook, S.J., Clarke, L.E., and Nield, J.M. (eds.) Geomorphological Techniques (Online Edition). British Society for Geomorphology, London (2013).
  • 46. Owens, E.H.: Tombolo. In: Schwartz, M. (ed.) Beaches and Coastal Geology. pp. 838–839 Springer US, New York, NY (1984). https://doi.org/10.1007/0-387-30843-1_474.
  • 47. Penney, W.G., Price, A.T., Martin, J.C., Moyce, W.J., Penney, W.G., Price, A.T., Thornhill, C.K.: Part I. The diffraction theory of sea waves and the shelter afforded by breakwaters. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 244, 882, 236–253 (1952). https://doi.org/10.1098/rsta.1952.0003.
  • 48. Pruszak, Z.: Akweny morskie: zarys procesów fizycznych i inżynierii środowiska. Wydawnictwo IBW PAN (2003).
  • 49. Ranasinghe, R., Larson, M., Savioli, J.: Shoreline response to a single shore-parallel submerged breakwater. Coastal Engineering. 57, 11, 1006–1017 (2010). https://doi.org/10.1016/j.coastaleng.2010.06.002.
  • 50. Rasmeemasmuang, T., Weesakul, S.: One-line Model Using the Combination of Polar and Cartesian Coordinates for Crenulate Shaped Bay. In: Proceedings of Coastal Dynamics 2009. pp. 1–14 World Scientific (2009). https://doi.org/10.1142/9789814282475_0063.
  • 51. Rosen, D.S., Vajda, M.: Sedimentological Influences of Detached Breakwaters. In: Coastal Engineering. pp. 1930–1949 (1982). https://doi.org/10.1061/9780872623736.116.
  • 52. Schönhofer, J., Szmytkiewicz, M.: Identyfikacja prądów rozrywających w strefie brzegowej południowego Bałtyku – modelowanie i obserwacje w naturze. Inżynieria Morska i Geotechnika. 6, 505–516 (2013).
  • 53. Schwartz, M.L., Granö, O., Pyökäri, M.: Spits and Tombolos in the Southwest Archipelago of Finland. Journal of Coastal Research. 5, 3, 443–451 (1989).
  • 54. Seymour, R.J.: Longshore Sediment Transport. In: Schwartz, M.L. (ed.) Encyclopedia of Coastal Science. pp. 600–600 Springer Netherlands, Dordrecht (2005). https://doi.org/10.1007/1-4020-3880-1_199.
  • 55. Shaw, W.S., Goff, J., Brander, R., Walton, T., Roberts, A., Sherker, S.: Surviving the surf zone: Towards more integrated rip current geographies. Applied Geography. 54, 54–62 (2014). https://doi.org/10.1016/j.apgeog.2014.07.010.
  • 56. Skinner, B.J., Porter, S.C.: The Dynamic Earth: An Introduction to Physical Geology. Wiley (1995).
  • 57. Specht, C., Dabrowski, P.S., Specht, M.: 3D modelling of beach topography changes caused by the tombolo phenomenon using terrestrial laser scanning (TLS) and unmanned aerial vehicle (UAV) photogrammetry on the example of the city of Sopot. Geo-Marine Letters. 40, 5, 675–685 (2020). https://doi.org/10.1007/s00367-020-00665-5.
  • 58. Specht, C., Lewicka, O., Specht, M., Dąbrowski, P., Burdziakowski, P.: Methodology for Carrying out Measurements of the Tombolo Geomorphic Landform Using Unmanned Aerial and Surface Vehicles near Sopot Pier, Poland. Journal of Marine Science and Engineering. 8, 6, (2020). https://doi.org/10.3390/jmse8060384.
  • 59. Specht, C., Mindykowski, J., Dąbrowski, P., Masnicki, R., Marchel, Ł., Specht, M.: Metrological aspects of the Tombolo effect investigation – Polish case study. Presented at the Proceedings of the 2019 IMEKO TC-19 International Workshop on Metrology for the Sea , Genova, Italy October 10 (2019).
  • 60. Specht, M., Specht, C., Lewicka, O., Makar, A., Burdziakowski, P., Dąbrowski, P.: Study on the Coastline Evolution in Sopot (2008–2018) Based on Landsat Satellite Imagery. Journal of Marine Science and Engineering. 8, 6, (2020). https://doi.org/10.3390/jmse8060464.
  • 61. Specht, M., Specht, C., Mindykowski, J., Dąbrowski, P., Maśnicki, R., Makar, A.: Geospatial Modeling of the Tombolo Phenomenon in Sopot using Integrated Geodetic and Hydrographic Measurement Methods. Remote Sensing. 12, 4, (2020). https://doi.org/10.3390/rs12040737.
  • 62. Suh, K.D., Hardaway, C.S.: Calculation of Tombolo in Shoreline Numerical Model. Presented at the 24th International Conference on Coastal Engineering , Kobe, Japan (1994). https://doi.org/10.1061/9780784400890.193.
  • 63. The Institute of Oceanology of the Polish Academy of Sciences: Performing research and modeling works of the bottom and the sea shore near the pier in Sopot (in Polish). (2016).
  • 64. Thurman, H.V., Trujillo, A.P.: Introductory Oceanography. Merrill Publishing Company (1985).
  • 65. Tombolo od przystani do molo: https://sopot.gmina.pl/raport-marina-tombolo-2016/, last accessed 2021/04/01.
  • 66. Urząd Morski w Gdyni: Zasilanie plaży w Gdyni Orłowie | Urząd Morski w Gdyni – portal informacyjny, https://www.umgdy.gov.pl/?p=35392, last accessed 2020/09/29.
  • 67. Uścinowicz, S.: Geochemistry Of Baltic Sea Surface Sediments. Polish Geological Institute-National Research Institute, Warsaw (2011).
  • 68. Vu, M.T., Lacroix, Y., Nguyen, V.T.: Empirical Equilibrium Beach Profiles Along the Eastern Tombolo of Giens. Journal of Marine Science and Application. 17, 2, 241–253 (2018). https://doi.org/10.1007/s11804-018-0027-3.
  • 69. Wiśniewski, B., Wolski, T.: Physical aspects of extreme storm surges and falls on the Polish coast: Oceanologia. 53, 1-TI, (2011).
  • 70. Yu, Y.-X., Liu, S.-X., Li, Y.S., Wai, O.W.H.: Refraction and diffraction of random waves through breakwater. Ocean Engineering. 27, 5, 489–509 (2000). https://doi.org/10.1016/S0029-8018(99)00005-0.
  • 71. Zeidler, R.B., Wróblewski, A., Miętus, M., Dziadziuszko, Z., Cyberski, J.: Wind, Wave, and Storm Surge Regime at the Polish Baltic Coast. Journal of Coastal Research. 33–55 (1995).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dcc7052b-2067-4985-97a1-c17f7f9cfccc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.