PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of copper, zinc and iron from water solutions by spruce sawdust adsorption

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The water pollution by toxic elements is one of the major problems threatening human health as well as the quality of the environment. Sorption is considered a cost-effective method that is able to effectively remove heavy metals. During past few years, researches have been researching usage of low-cost adsorbents like bark, lignin, chitosan peat moss and sawdust. This paper deals with the study of copper, zinc and iron adsorption by adsorption of spruce sawdust obtained as a by-product from locally used wood. Raw spruce sawdust was used to remove heavy metal ions from the model solutions with ion concentration of 10 mg/L during 24 hours or 5, 10, 15, 30, 45, 60, 120 min, respectively. Fourier-transform infrared spectroscopy was applied to determine functional groups of sawdust. Sorption efficiency was higher than 67% in short-time experiments and higher than 75% for one day experiments in all tested cations.
Rocznik
Tom
Strony
64--74
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Technical University of Kosice, Faculty of Civil Engineering, Institute of Environmental Engineering Vysokoskolska 4, 042 00 Kosice, Slovakia
  • Technical University of Kosice, Faculty of Civil Engineering, Institute of Environmental Engineering Vysokoskolska 4, 042 00 Kosice, Slovakia
  • Technical University of Kosice, Faculty of Civil Engineering, Institute of Environmental Engineering Vysokoskolska 4, 042 00 Kosice, Slovakia
Bibliografia
  • Abdel-Raouf M.S. et al. (2017), Removal of Heavy Metals from Industrial Waste Water by Biomass-Based Materials: A Review, “Journal of Pollution Effects & Contontrol“ No. 5(180), p. 1-13, DOI: 10.4172/2375-4397.1000180
  • Ageena N.A. (2010), The use of local sawdust as an adsorbent for the removal of copper ion from wastewater using fixed bed adsorption, “Engineering and Technology Journal” No. 28(2), p. 224-235
  • Al-Saydeh S.A. et al. (2017), Copper removal from industrial wastewater: A comprehensive review, “Journal of Industrial and Engineering Chemistry” No. 56, p. 35-44, DOI: /10.1016/j.jiec.2017.07.026.
  • Al-Shahrani S.S. (2013), Treatment of wastewater contaminated with Fe (II) by Adsorption onto Saudi Activated Bentonite, “International Journal of Engineering & Technology” No. 6, p. 58-66
  • Balintova M. et al. (2016), A study of sorption heavy metals by natural organic sorbents, “International Journal of Energy and Environment” No. 10, p. 189-194
  • Balintova M. et al. (2011), Study of pH influence on selective precipitation of heavy metals from acid mine drainage, “Chemical Engineering Transactions” No. 25, p. 1-6, DOI: 10.3303/CET1125058
  • Demcak S. et al. (2017), Utilization of poplar wood sawdust for heavy metals removal from model solutions, “Nova Biotechnologica et Chimica” No. 16(1), 26-31, DOI: 10.1515/nbec-2017-0004
  • Demcak S. et al. (2019), Effect of alkaline treatment of wooden sawdust for the removal of heavy metals from aquatic environments, “Desalination and Water Treatment” No. 155, p. 207-215, DOI: 10.5004/dwt.2019.24053
  • Elkady G.M. et al. (2017), Removal of Fe(II) and Mn(II) from wastewater using nanochitosan prepared from shrimp waste, “Al-Azhar Bulletin of Science” No. 28(1-A), p. 45-56, DOI: 10.21608/absb.2017.8111
  • El-Saied F.A. et al. (2017), Removal of lead and copper ions from polluted aqueous solutions using nano-sawdust particles, “International Journal of Waste Resources” No. 7(305), p. 1-7, DOI: 10.4172/2252-5211.1000305
  • Gogoi H. et al. (2018), Removal of metals from industrial wastewater and urban runoff by mineral and bio-based sorbents, “Journal of Environmental Management” No. 209, p. 316-327, DOI: 10.1016/j.jenvman.2017.12.019
  • Ince M. et al. (2017), An Overview of adsorption technique for heavy metal removal from water/wastewater: A critical review, “International Journal of Pure and Applied Sciences” No. 3(2), p. 10-19, DOI: 10.29132/ijpas.372335
  • Kumar V. et al. (2017), Studies on high iron content in water resources of Moradabad district (UP), India, “Water Science” No. 31(1), p. 44-51, DOI: 10.1016/j.wsj.2017.02.003
  • Larous S. et al. (2005), Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust, “Desalination” No. 185(1-3), p. 483-490, DOI: 10.1016/j.desal.2005.03.090
  • Larous S., Meniai A.H. (2012), Removal of copper (II) from aqueous solution by agricultural by-products-sawdust, “Energy Procedia” No. 18, p. 915-923, DOI: 10.1016/j.egypro.2012.05.106
  • Memon S.Q. (2008), Sawdust: A green and economical sorbent for thallium removal, “Chemical Engineering Journal” No. 140(1-3), p. 235-240, DOI: 10.1016/j.cej.2007.09.044
  • Ouafi R. et al. (2017), Sawdust in the treatment of heavy metals-contaminated wastewater, “Environmental Research Journal” No. 11(1), p. 111-132
  • Pragati S.S.T. et al. (2015), Removal of zinc from synthetic wastewater by sawdust as an adsorbent, “International Journal of Innovative Science, Engineering & Technology” No. 2(6), p. 307-354
  • Ricordel S. et al. (2001), Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modelling, “Separation and Purification Technology” No. 24(3), p. 389-401, DOI: 10.1016/S1383-5866(01)00139-3
  • Salamat A. et al. (2017), Valorization the waste of the wood industry (sawdust) and their use as adsorbent material: physicochemical characterization and modeling of optimization sorption using statistical approach, “Journal of Materials and Environmental Sciences” No. 9(1), p. 201-211, DOI: 10.26872/jmes.2018.9.1.23
  • Schwanninger M. et al. (2004), Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose, “Vibrational Spectroscopy” No. 36(1), p. 23-40, DOI: 10.1016/j.vibspec.2004.02.003
  • Senin H.B. et al. (2007), Role of sawdust in the removal of iron from aqueous solution, “Journal on Science and Technology for Development” No. 23(3), p. 223-229, DOI: 10.3125/asean.v23i3.422
  • Simón D. et al. (2019), Immobilization of Zn (II) ions from contaminated biomass using ceramic matrices, “Journal of Hazardous Materials” No. 373, p. 687-697, DOI: 10. 1016/j.jhazmat.2019.03.123
  • Thapak H.K. et al. (2015), Adsorption of copper ions in aqueous media using tea waste and sawdust as an adsorbent, “International Journal for Innovative Research in Science & Technology” No. 2(3), p. 52-57
  • Udomkitthaweewat N. et al. (2019), Removal of zinc based on a screw manufacturing plant wastewater by fluidized-bed homogeneous granulation process, “Journal of Cleaner Production” No. 230, p. 1276-1286, DOI: 10.1016/j.jclepro.2019.05.192
  • Zhang X. et al. (2019), Impacts of the heavy metals Cu (II), Zn (II) and Fe (II) on an Anammox system treating synthetic wastewater in low ammonia nitrogen and low temperature: Fe (II) makes a difference, “Science of the Total Environment” No. 648, p. 798-80, DOI: 10.1016/j.scitotenv.2018.08.206
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dcbe631c-2bf2-40f8-ba3d-afc7204866bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.